已知函數(shù).
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)用定義證明函數(shù)在區(qū)間上為增函數(shù);
(3)若函數(shù)在區(qū)間上的最大值與最小值之和不小于,求的取值范圍.

(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)[4,+∞).

解析試題分析:(1)利用奇偶性定義可證;(2)利用單調(diào)性定義可證;(3)在單調(diào)遞增區(qū)間內(nèi),由題意可得關(guān)于的不等式,解不等式即可.
試題解析:
解:(1)函數(shù)是奇函數(shù),              1分
∵函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0b/7/dskgd1.png" style="vertical-align:middle;" />,在軸上關(guān)于原點(diǎn)對(duì)稱(chēng),    2分
,                 3分
∴函數(shù)是奇函數(shù).              4分
(2)證明:設(shè)任意實(shí)數(shù),且,         5分
,     6分
 ∴,        7分
<0 ,    8分
<0,即,           9分
∴函數(shù)在區(qū)間上為增函數(shù).           10分
(3)∵,
∴函數(shù)在區(qū)間上也為增函數(shù).                  11分
,         12分
若函數(shù)在區(qū)間上的最大值與最小值之和不小于
,            13分

的取值范圍是[4,+∞).               14分
考點(diǎn):函數(shù)的單調(diào)性,奇偶性,最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=2x+k·2-x,k∈R.
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)k的值;
(2)若對(duì)任意的x∈[0,+∞)都有f(x)>2-x成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,過(guò)點(diǎn)且傾斜角為的直線交橢圓于兩點(diǎn),橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),軸,圓過(guò)點(diǎn),且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱(chēng)圓為該橢圓的內(nèi)切圓.問(wèn)橢圓是否存在過(guò)點(diǎn)的內(nèi)切圓?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某種樹(shù)苗栽種時(shí)高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足f(n)=,其中,a,b為常數(shù),n∈N,f(0)=A.已知栽種3年后該樹(shù)木的高度為栽種時(shí)高度的3倍.
(1)栽種多少年后,該樹(shù)木的高度是栽種時(shí)高度的8倍;
(2)該樹(shù)木在栽種后哪一年的增長(zhǎng)高度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

己知函數(shù),在處取最小值.
(1)求的值;
(2)在中,分別是的對(duì)邊,已知,求角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個(gè)同心圓弧、弧以及兩條線段圍成的封閉圖形.花壇設(shè)計(jì)周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對(duì)花壇的邊緣進(jìn)行裝飾時(shí),已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時(shí),取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的最小正周期和值域;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2+ax+b的兩個(gè)零點(diǎn)是-2和3,解不等式bf(ax)>0;

查看答案和解析>>

同步練習(xí)冊(cè)答案