已知數(shù)列的前項(xiàng)和為,并滿足:(   )
A.7B.12C.14D.21
C.

試題分析:由,得,故數(shù)列為等差數(shù)列.又.故選C.項(xiàng)和公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,
(1)證明是等比數(shù)列,并求的通項(xiàng)公式;
(2)求的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若an=n2+λn+3(其中λ為實(shí)常數(shù)),n∈N*,且數(shù)列{an}為單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知命題:若數(shù)列{an}為等差數(shù)列,且ama,anb(mn,mn∈N*),則amn;現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N*),bma,bnb(mnmn∈N*),若類比上述結(jié)論,則可得到bmn=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列中,已知,,記為數(shù)列的前項(xiàng)和,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在遞增等差數(shù)列{an}中,a1=2,a1,a3a7成等比數(shù)列,{bn}的前n項(xiàng)和為Sn,且Sn=2n+1-2.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cnabn,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,首項(xiàng)a1=120,公差d=-4,若Snan(n≥2),則n的最小值為(  )
A.60 B.62 C.70 D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

知{an}是首項(xiàng)為-2的等比數(shù)列,Sn是其前n項(xiàng)和,且S3,S2,S4成等差數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若bn=log2|an|,求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=px2+qx(p≠0),其導(dǎo)函數(shù)為f'(x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若cn=(an+2),2b1+22b2+23b3+…+2nbn=cn,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案