【題目】已知函數(shù).

1)若,求的導(dǎo)數(shù);

2)討論的單調(diào)區(qū)間;

3)設(shè),若對(duì)任意,均存在,使得,求a的取值范圍.

【答案】12)見解析(3.

【解析】

1)根據(jù)得到,再求導(dǎo).

2)根據(jù)定義域和根的大小,分,, ,四種情況討論求解.

3)根據(jù)對(duì)任意,均存在,使得,轉(zhuǎn)化為在上有,然后分別求得兩個(gè)函數(shù)的最大值即可.

1)當(dāng)時(shí),,

所以.

2.可化為

.

①當(dāng)時(shí),,,在區(qū)間上,,在區(qū)間,

的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

②當(dāng)時(shí),,在區(qū)間上,;在區(qū)間,

的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

③當(dāng)時(shí),,故的單調(diào)遞增區(qū)間是.

④當(dāng)時(shí),,在區(qū)間上,;在區(qū)間上,,

的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

3)由已知,在上有.

因?yàn)?/span>,

所以,由(2)可知,

①當(dāng)時(shí),上單調(diào)遞增,

,

所以,解得,

.

②當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,

.

可知,,

所以,,即,

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),常數(shù)).

1)當(dāng)時(shí),討論函數(shù)的奇偶性并說明理由;

2)若函數(shù)在區(qū)間上單調(diào),求正數(shù)的取值范圍;

3)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐PABC中,ACBC,ACBC2,PAPBPC3,OAB中點(diǎn),EPB中點(diǎn).

1)證明:平面PAB⊥平面ABC;

2)求點(diǎn)B到平面OEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是(  )

A. 這15天日平均溫度的極差為

B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天

C. 由折線圖能預(yù)測(cè)16日溫度要低于

D. 由折線圖能預(yù)測(cè)本月溫度小于的天數(shù)少于溫度大于的天數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用電,某市實(shí)行“階梯式”電價(jià),將每戶居民的月用電量分為二檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度的部分按0.8元/度收費(fèi).某小區(qū)共有居民1000戶,為了解居民的用電情況,通過抽樣,獲得了今年7月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)試估計(jì)該小區(qū)今年7月份用電量用不超過260元的戶數(shù);

(3)估計(jì)7月份該市居民用戶的平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

)證明:BD⊥PC;

)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線方程為,其中

1)求證:直線恒過定點(diǎn);

2)當(dāng)變化時(shí),求點(diǎn)到直線的距離的最大值;

3)若直線分別與軸、軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,分別過點(diǎn)且與拋物線相切,的交點(diǎn).

)若直線過拋物線的焦點(diǎn),求證動(dòng)點(diǎn)在一條定直線上,并求此直線方程;

)設(shè)為直線與直線的交點(diǎn),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案