有如下結(jié)論:“圓上一點(diǎn)處的切線方程為”,類比也有結(jié)論:“橢圓處的切線方程為”,過(guò)橢圓C:的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.
(1)求證:直線AB恒過(guò)一定點(diǎn);
(2)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.
(1)略(2)

(1)設(shè)M
…2分
∵點(diǎn)M在MA上∴,同理可得②       …3分
由①②知AB的方程為…………4分
易知右焦點(diǎn)F()滿足③式,      …5分
故AB恒過(guò)橢圓C的右焦點(diǎn)F() …6分
(2)把AB的方程 …7分
               …8分
又M到AB的距離            …10分
∴△ABM的面積……………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分11分)已知拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過(guò)點(diǎn)。
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若的三個(gè)頂點(diǎn)在拋物線上,且點(diǎn)的橫坐標(biāo)為1,過(guò)點(diǎn)分別作拋物線的切線,兩切線相交于點(diǎn),直線軸交于點(diǎn),當(dāng)直線的斜率在上變化時(shí),直線斜率是否存在最大值,若存在,求其最大值和直線的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我國(guó)計(jì)劃發(fā)射火星探測(cè)器,該探測(cè)器的運(yùn)行軌道是以火星(其半徑百公里)的中心為一個(gè)焦點(diǎn)的橢圓. 如圖,已知探測(cè)器的近火星點(diǎn)(軌道上離火星表面最近的點(diǎn))到火星表面的距離為百公里,遠(yuǎn)火星點(diǎn)(軌道上離火星表面最遠(yuǎn)的點(diǎn))到火星表面的距離為800百公里. 假定探測(cè)器由近火星點(diǎn)第一次逆時(shí)針運(yùn)行到與軌道中心的距離為百公里時(shí)進(jìn)行變軌,其中分別為橢圓的長(zhǎng)半軸、短半軸的長(zhǎng),求此時(shí)探測(cè)器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)在平面直角坐標(biāo)系xOy中,已知三點(diǎn)A(-1,0),B(1,0),,以A、B為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)C。
(I)求橢圓的方程;
(II)設(shè)點(diǎn)D(0,1),是否存在不平行于x軸的直線與橢圓交于不同兩點(diǎn)M、N,使
?若存在,求出直線斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由:
(III)對(duì)于y軸上的點(diǎn)P(0,n),存在不平行于x軸的直線與橢圓交于不同兩點(diǎn)M、N,使,試求實(shí)數(shù)n的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右頂點(diǎn)分別為曲線是以橢圓中心為頂點(diǎn),為焦點(diǎn)的拋物線.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線交于不同的兩點(diǎn)當(dāng)時(shí),求直線的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在中,、邊上的高分別為,則以、為焦點(diǎn),且過(guò)、的橢圓與雙曲線的離心率的倒數(shù)和為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線(a>0,b>0)的左、右焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),若雙曲線上存在點(diǎn)P,使,則雙曲線的離心率e的取值范圍(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓右焦點(diǎn)重合,則的值為(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線與拋物線所圍成圖形的面積為        

查看答案和解析>>

同步練習(xí)冊(cè)答案