【題目】設(shè)二次函數(shù),其中常數(shù).
(1)求在區(qū)間上的最小值(用表示);
(2)解不等式;
(3)若對(duì)任意恒成立,試求實(shí)數(shù)的取值范圍.
【答案】(1);(2)見解析;(3).
【解析】
(1)就二次函數(shù)的對(duì)稱軸與區(qū)間的位置關(guān)系進(jìn)行分類討論,分析二次函數(shù)在區(qū)間上的單調(diào)性,從而可得出函數(shù)在區(qū)間上的最小值;
(2)分、兩種情況解不等式,即可得出各種情況下不等式的解集;
(3)由(1)中的結(jié)論,將問題轉(zhuǎn)化為函數(shù)在區(qū)間上的最小值,然后解出該不等式可得出實(shí)數(shù)的取值范圍.
(1)二次函數(shù)對(duì)稱軸為直線,且圖象開口向上.
若,即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,
則;
若,即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,則;
若,即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,
則.
因此,;
(2).
當(dāng)時(shí),即當(dāng)時(shí),則不等式的解集為;
當(dāng)時(shí),即當(dāng)或時(shí),解不等式,即.
解得或.
此時(shí),不等式的解集為;
(3)由題意知,函數(shù)在區(qū)間上的最小值.
由(1)知,當(dāng)時(shí),則,解得,此時(shí);
當(dāng)時(shí),則,解得,此時(shí);
當(dāng)時(shí),則,解得,此時(shí).
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①函數(shù),的圖象與直線可能有兩個(gè)不同的交點(diǎn);
②函數(shù)與函數(shù)是相等函數(shù);
③對(duì)于指數(shù)函數(shù)與冪函數(shù),總存在,當(dāng)時(shí),有成立;
④已知是方程的根,是方程的根,則.
其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:
①函數(shù)y=2x與函數(shù)y=log2x互為反函數(shù);
②若集合A={x|kx2+4x+4=0}中只有一個(gè)元素,則k=1;
③若,則f(x)=x2-2;
④函數(shù)y=log2(1-x)的單調(diào)減區(qū)間是(-∞,1);
其中所有正確的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的橢圓C的一個(gè)頂點(diǎn)為,焦點(diǎn)在x軸上,右焦點(diǎn)到直線的距離為.
求橢圓的標(biāo)準(zhǔn)方程;
若直線l:交橢圓C于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)與點(diǎn)M不重合,且直線與x軸的交于點(diǎn)P,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求f(1)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.
()求的單調(diào)區(qū)間.
()求證:當(dāng)時(shí),函數(shù)存在最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:.
若圓C的切線l在x軸和y軸上的截距相等,且截距不為零,求切線l的方程;
已知點(diǎn)為直線上一點(diǎn),由點(diǎn)P向圓C引一條切線,切點(diǎn)為M,若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),滿足,.
(1)求函數(shù)的解析式;
(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)的兩個(gè)零點(diǎn)分別在區(qū)間和內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a-.
(1)求f(0);
(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若f(x)為奇函數(shù),求滿足f(ax)<f(2)的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com