6.△PF1F2的一個(gè)頂點(diǎn)P(7,12)在雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1上,另外兩頂點(diǎn)F1、F2為該雙曲線的左、右焦點(diǎn),則△PF1F2的內(nèi)心坐標(biāo)為(1,$\frac{3}{2}$).

分析 通過(guò)已知條件求出b,充分利用平面幾何圖形的性質(zhì)解題.因從同一點(diǎn)出發(fā)的切線長(zhǎng)相等,得PM|=|PN|,|F1M|=|F1D|,|F2N|=|F2D|,再結(jié)合雙曲線的定義得|F1D|-|F2D|=2a,從而即可求得△PF1F2的內(nèi)心的橫坐標(biāo).

解答 解:P(7,12)在雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1上,
所以49-$\frac{144}{^{2}}$=1,b2=3,
雙曲線方程為:${x}^{2}-\frac{{y}^{2}}{3}=1$.
記△PF1F2的內(nèi)切圓圓心為C,邊PF1、PF2、F1F2上的切點(diǎn)分別為M、N、D,易見(jiàn)C、D橫坐標(biāo)相等,
|PM|=|PN|,|F1M|=|F1D|,|F2N|=|F2D|,由|PF1|-|PF2|=2,
即:|PM|+|MF1|-(|PN|+|NF2|)=2,得|MF1|-|NF2|=2即|F1D|-|F2D|=2,
記C的橫坐標(biāo)為x0,則D(x0,0),
于是:x0+c-(c-x0)=2,
得x0=1,
|PF1|=$\sqrt{({7+2)}^{2}+({12-0)}^{2}}$=15,|PF2|=$\sqrt{(7-2)^{2}+(12-0)^{2}}$=13,
設(shè)縱坐標(biāo)為r,則:$\frac{1}{2}×4×12$=$\frac{1}{2}×$(4+13+15)•r,解得r=$\frac{3}{2}$.
故答案為:(1,$\frac{3}{2}$).

點(diǎn)評(píng) 本題主要考查了雙曲線的定義、雙曲線的應(yīng)用及轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在區(qū)間[0,1]上任取兩個(gè)實(shí)數(shù)a,b,則函數(shù)f(x)=$\frac{1}{3}$x2+ax-b在區(qū)間[-1,1]上有且僅有一個(gè)零點(diǎn)的概率為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)φ(x)=lnx-ax(a∈R).
(1)討論φ(x)的單調(diào)性;
(2)設(shè)f(x)=φ(x)-$\frac{1}{2}$x3,當(dāng)x>0時(shí),f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.用數(shù)學(xué)歸納方法證明:22+42+62+…+(2n)2=$\frac{2}{3}$n(n+1)(2n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.$\frac{3-2i}{1+3i}$=( 。
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y≤0\\ x-3y+5≥0\\ x≥0\\ y≥0\end{array}\right.$,則$z={({\frac{1}{4}})^x}•{({\frac{1}{2}})^y}$的最小值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx+x+$\frac{a}{x}$.
(Ⅰ)若a=-2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若關(guān)于x的不等式f(x)≥a+1在(0,+∞)上恒成立,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.計(jì)算:$\frac{\sqrt{3}sin20°+sin70°}{\sqrt{2-2cos100°}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在2016年高考結(jié)束后,針對(duì)高考成績(jī)是否達(dá)到了考生自己預(yù)期水平的情況,某校在高三部分畢業(yè)生內(nèi)部進(jìn)行了抽樣調(diào)查,現(xiàn)從高三年級(jí)A、B、C、D、E、F六個(gè)班隨機(jī)抽取了50人,將統(tǒng)計(jì)結(jié)果制成了如下的表格:
班級(jí)
抽取人數(shù)10 12 12 
其中達(dá)到預(yù)期水平的人數(shù) 3 6 6
(Ⅰ)根據(jù)上述表格的數(shù)據(jù)估計(jì),該校這些班中,哪個(gè)班的學(xué)生高考成績(jī)達(dá)到自己的預(yù)期水平的概率較高?
(Ⅱ)若從A班、F班,從抽查到的達(dá)到預(yù)期水平的所有對(duì)象中,再隨機(jī)選取2名同學(xué)進(jìn)行詳細(xì)調(diào)查,求選取的2人中含有A班同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案