【題目】已知函數(shù)處取得極值.

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)(2)

【解析】

先對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)處取得極值,求出;

(1)將代入解析式,再由導(dǎo)數(shù)的方法求出其在處的切線斜率,進(jìn)而可求出結(jié)果;

(2)函數(shù)有三個(gè)零點(diǎn),等價(jià)于方程有三個(gè)不等實(shí)根,也即是函數(shù)與直線有三個(gè)不同的交點(diǎn),由導(dǎo)數(shù)的方法研究函數(shù)的極值,即可得出結(jié)果.

解:,

由題意知,所以.

所以.

(1)當(dāng)時(shí),,,

所以,

所以處的切線方程為,即.

(2)令,則.

設(shè),則的圖象有三個(gè)交點(diǎn).

所以當(dāng)變化時(shí),,的變化情況為

1

+

0

-

0

+

增函數(shù)

極大值

減函數(shù)

極小值

增函數(shù)

所以,.

又當(dāng)時(shí),;當(dāng)時(shí),,

所以,即.

所以的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面,中點(diǎn).

(1)試在上確定一點(diǎn),使得平面;

(2)點(diǎn)在滿足(1)的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大以來(lái),某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過(guò)不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民收入也逐年增加.為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭(zhēng)早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了201850位農(nóng)民的年收入并制成如下頻率分布直方圖:

附:參考數(shù)據(jù)與公式 ,若 ,則① ;② ;③ .

1)根據(jù)頻率分布直方圖估計(jì)50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

2)由頻率分布直方圖可以認(rèn)為該貧困地區(qū)農(nóng)民年收入 X 服從正態(tài)分布 ,其中近似為年平均收入 近似為樣本方差 ,經(jīng)計(jì)算得:,利用該正態(tài)分布,求:

i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

ii)為了調(diào)研精準(zhǔn)扶貧,不落一人的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個(gè)農(nóng)民的年收入相互獨(dú)立,問(wèn):這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列函數(shù)的單調(diào)區(qū)間,并指出該函數(shù)在其單調(diào)區(qū)間上是增函數(shù)還是減函數(shù).

1fx)=-;

2fx)=

3fx)=-x22|x|3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列函數(shù)的奇偶性:

1fx)=x3x;

2;

3

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某海濱浴場(chǎng)海浪的高度y(米)是時(shí)間t的(0≤t≤24,單位:小時(shí))函數(shù),記作y=ft),下表是某日各時(shí)的浪高數(shù)據(jù):

th

0

3

6

9

12

15

18

21

24

ym

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

經(jīng)長(zhǎng)期觀測(cè)y=ft的曲線可近似地看成是函數(shù)y=Acosωtb的圖象

1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωtb的最小正周期T、振幅A及函數(shù)表達(dá)式;

2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛(ài)好者開(kāi)放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時(shí)到晚上20時(shí)之間,有多長(zhǎng)時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三(3)班學(xué)生要安排畢業(yè)晚會(huì)的3個(gè)音樂(lè)節(jié)目,2個(gè)舞蹈節(jié)目和1個(gè)曲藝節(jié)目的演出順序,要求2個(gè)舞蹈節(jié)目不連排,3個(gè)音樂(lè)節(jié)目恰有2個(gè)節(jié)目連排,則不同排法的種數(shù)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex-ax-1,其中e是自然對(duì)數(shù)的底數(shù),實(shí)數(shù)a是常數(shù).

(1)設(shè)a=e,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;

(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案