【題目】設數(shù)列{an}滿足a1=a,an+1=can+1﹣c(n∈N*),其中a,c為實數(shù),且c≠0. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設 ,求數(shù)列{bn}的前n項和Sn

【答案】解:(Ⅰ)∵an+1=can+1﹣c,an+1﹣1=c(an﹣1),∴當a1=a≠1時,{an﹣1}是首項為a﹣1,公比為c的等比數(shù)列
∴an﹣1=(a﹣1)cn1
當a=1時,an=1仍滿足上式.
∴數(shù)列{an﹣1}的通項公式為an=(a﹣1)cn1+1(n∈N*);
(Ⅱ)由(1)得,當 時,


兩式作差得

=

【解析】(1)整理an+1=can+1﹣c得an+1﹣1=c(an﹣1),進而判斷出當a1=a≠1時,{an﹣1}是首項為a﹣1,公比為c的等比數(shù)列,進而根據(jù)等比數(shù)列的性質求得其通項公式,當a=1時,也成立,進而可得答案.(2)根據(jù)(1)中的an , 求得bn , 進而根據(jù)錯位相減法求得數(shù)列的前n項的和.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用an表示自然數(shù)n的所有因數(shù)中最大的那個奇數(shù),例如:9的因數(shù)有1,3,9,則a9=9;10的因數(shù)有1,2,5,10,則a10=5,記數(shù)列{an}的前n項和為Sn , 則S =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實數(shù)m的范圍;
(2)在方程表示圓時,該圓與直線l:x+2y﹣4=0相交于M、N兩點,且|MN|= ,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)當a>0時,用作差法證明:f( )< [f(x1)+f(x2)];
(2)已知當x∈[0,1]時,|f(x)|≤1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程是為參數(shù)),以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位,曲線的極坐標方程是.

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)求直線被曲線的截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆質地均勻的骰子先后拋擲2次,觀察其向上的點數(shù),分別記為x,y.
(1)若記“x+y=8”為事件A,求事件A發(fā)生的概率;
(2)若記“x2+y2≤12”為事件B,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中學生綜合素質評價某個維度的測評中,分優(yōu)秀、合格、尚待改進三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結果,并作出頻數(shù)統(tǒng)計表如下:

表一:男生

表二:女生

(1)從表二的非優(yōu)秀學生中隨機抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;

(2)由表中統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有90%的把握認為“測評結果優(yōu)秀與性別有關”.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)試討論函數(shù)的單調性;

(2)設,記,當時,若方程有兩個不相等的實根, ,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學剛搬遷到新校區(qū),學?紤],若非住校生上學路上單程所需時間人均超過20分鐘,則學校推遲5分鐘上課.為此,校方隨機抽取100個非住校生,調查其上學路上單程所需時間(單位:分鐘),根據(jù)所得數(shù)據(jù)繪制成如下頻率分布直方圖,其中時間分組為[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求頻率分布直方圖中a的值;
(2)從統(tǒng)計學的角度說明學校是否需要推遲5分鐘上課;
(3)若從樣本單程時間不小于30分鐘的學生中,隨機抽取2人,求恰有一個學生的單程時間落在[40,50]上的概率.

查看答案和解析>>

同步練習冊答案