【題目】在中學(xué)生綜合素質(zhì)評價(jià)某個(gè)維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

表一:男生

表二:女生

(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;

(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.01

2.706

3.841

6.635

【答案】(1).(2)見解析.

【解析】試題分析:(1)根據(jù)分層抽樣的規(guī)則可得設(shè)從高一年級男生中抽出人,則, ,然后求出女生人數(shù)即可得x,y值然后寫出基本事件,根據(jù)古典概型求概率即可(2)對于獨(dú)立性檢驗(yàn)首先寫出列聯(lián)表,然后根據(jù)公式計(jì)算即可

試題解析:

(1)設(shè)從高一年級男生中抽出人,則, ,則從女生中抽取20人,

所以, .

表二中非優(yōu)秀學(xué)生共5人,記測評等級為合格的3人為, ,尚待改進(jìn)的2人為, ,則從這5人中任選2人的所有可能結(jié)果為 , , , , , , , , ,共10種,

設(shè)事件表示“從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人,恰有1人測評等級為合格”,則的結(jié)果為, , , ,共6種,所以,即所求概率為.

(2)列聯(lián)表如下:

因?yàn)?/span>,

,所以沒有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有質(zhì)地、大小完全相同的5個(gè)小球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲.甲先摸出一個(gè)球.記下編號,放回后再摸出一個(gè)球,記下編號,如果兩個(gè)編號之和為偶數(shù).則算甲贏,否則算乙贏.
(1)求甲贏且編號之和為6的事件發(fā)生的概率:
(2)試問:這種游戲規(guī)則公平嗎.請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)利用“五點(diǎn)法”畫出函數(shù) 在長度為一個(gè)周期的閉區(qū)間的簡圖.

(2)并說明該函數(shù)圖像可由y=sinx(x∈R)的圖像經(jīng)過怎樣平移和伸縮變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1=a,an+1=can+1﹣c(n∈N*),其中a,c為實(shí)數(shù),且c≠0. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)函數(shù):

.

)從中任意拿取張卡片,中至少有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;

)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)系式中正確的是(
A.sin 11°<cos 10°<sin 168°
B.sin 168°<sin 11°<cos 10°
C.sin 11°<sin 168°<cos 10°
D.sin 168°<cos 10°<sin 11°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為緩解高三學(xué)生的高考壓力,經(jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動(dòng),經(jīng)過一段時(shí)間的訓(xùn)練后從該年級800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測試,并將其成績分為、五個(gè)等級,統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)以上抽樣調(diào)查數(shù)據(jù),回答下列問題:

(1)試估算該校高三年級學(xué)生獲得成績?yōu)?/span>的人數(shù);

(2)若等級、、、、分別對應(yīng)100分、90分、80分、70分、60分,學(xué)校要求平均分達(dá)90分以上為“考前心理穩(wěn)定整體過關(guān)”,請問該校高三年級目前學(xué)生的“考前心理穩(wěn)定整體”是否過關(guān)?

(3)為了解心理健康狀態(tài)穩(wěn)定學(xué)生的特點(diǎn),現(xiàn)從、兩種級別中,用分層抽樣的方法抽取11個(gè)學(xué)生樣本,再從中任意選取3個(gè)學(xué)生樣本分析,求這3個(gè)樣本為級的個(gè)數(shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x+ (x≠﹣1)的值域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ a(x﹣1)(a∈R).
(1)若a=﹣2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若不等式f(x)<0對任意x∈(1,+∞)恒成立. (ⅰ)求實(shí)數(shù)a的取值范圍;
(ⅱ)試比較ea2與ae2的大小,并給出證明(e為自然對數(shù)的底數(shù),e=2.71828).

查看答案和解析>>

同步練習(xí)冊答案