求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經(jīng)過點(diǎn);橢圓的一個焦點(diǎn)到長軸兩端點(diǎn)的距離分別為10和4.

 

【答案】

(1)(2)(3)

【解析】

試題分析:(1)   

(2)由題意可知,焦點(diǎn)在y軸上,所以方程為

(3)   

考點(diǎn):橢圓方程及性質(zhì)

點(diǎn)評:橢圓中常用性質(zhì):長軸,短軸,焦距,離心率,頂點(diǎn)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn)P(
1
3
,
1
3
),Q(0,-
1
2
)
;
(2)經(jīng)過點(diǎn)(2,-3)且與橢圓9x2+4y2=36具有共同的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)經(jīng)過點(diǎn)(2,-3)且與橢圓9x2+4y2=36有公共焦點(diǎn);
(2)經(jīng)過點(diǎn)A(2,
2
)和點(diǎn)B(
6
,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)已知橢圓的焦點(diǎn)在X軸上,長軸長是短軸長的3倍,且過點(diǎn)A(3,0).
(2)已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對稱軸,且經(jīng)過兩點(diǎn)P1(
6
,1)
P2(-
3
,-
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省攀枝花市高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分) 求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.

    (1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過兩點(diǎn);

    (2)經(jīng)過點(diǎn)(2,-3)且與橢圓具有共同的焦點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高二第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

分別求滿足下列條件的橢圓標(biāo)準(zhǔn)方程.

(1)過點(diǎn)P(1,),Q().  (2)焦點(diǎn)在x軸上,焦距為4,并且過點(diǎn)

 

查看答案和解析>>

同步練習(xí)冊答案