【題目】直線是過點的動直線,當與圓相切時,同時也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點,與圓交于不同的兩點A、B,面積為,面積為,當時,求直線的方程.
【答案】(1)(2)
【解析】
(1)設直線,根據直線與圓相切的性質列出方程求解m,再聯(lián)立直線方程與拋物線方程得到關于y的一元二次方程,由直線l與拋物線相切得即可求得p;(2)聯(lián)立直線方程與拋物線方程,利用韋達定理及弦長公式求出,求出圓心O到直線l的距離代入求出,由得,列方程求解m即可求得直線方程.
(1)由題意可知直線斜率顯然不為0 ,設直線,
由題意知圓心到直線l的距離 ,,
聯(lián)立直線與拋物線方程,因為直線l與拋物線相切
,解得,
拋物線的方程為.
(2)聯(lián)立直線與拋物線方程,
根據題意,
設,,則,,
所以,
圓心到直線的距離,
,
,,
,解得,,
所以直線l的方程為.
科目:高中數學 來源: 題型:
【題目】從某高三年級男生中隨機抽取50名測量身高,測量發(fā)現被測學生身高全部介于和之間,將測量結果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計該校高三年級男生身高的中位數;
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙二人進行一場比賽,該比賽采用三局兩勝制,即先獲得兩局勝利者獲得該場比賽勝利.在每一局比賽中,都不會出現平局,甲獲勝的概率都為.
(1)求甲在第一局失利的情況下,反敗為勝的概率;
(2)若,比賽結束時,設甲獲勝局數為,求其分布列和期望;
(3)若甲獲得該場比賽勝利的概率大于甲每局獲勝的概率,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線是過點的動直線,當與圓相切時,同時也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點,與圓交于不同的兩點A、B,面積為,面積為,當時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在單位圓O:x2+y2=1上任取一點P(x,y),圓O與x軸正向的交點是A,設將OA繞原點O旋轉到OP所成的角為θ,記x,y關于θ的表達式分別為x=f(θ),y=g(θ),則下列說法正確的是( 。
A.x=f(θ)是偶函數,y=g(θ)是奇函數
B.x=f(θ)在為增函數,y=g(θ)在為減函數
C.f(θ)+g(θ)≥1對于恒成立
D.函數t=2f(θ)+g(2θ)的最大值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一項針對我國《義務教育數學課程標準》的研究,表1為各個學段每個內容主題所包含的條目數.下圖是將下表的條目數轉化為百分比,按各學段繪制的等高條形圖.由圖表分析得出以下四個結論,其中錯誤的是( )
學段 內容主題 | 第一學段 (1—3年級) | 第二學段 (4—6年級) | 第三學段 (7—9年級) | 合計 |
數與代數 | 21 | 28 | 49 | 98 |
圖形與幾何 | 18 | 25 | 87 | 130 |
統(tǒng)計與概率 | 3 | 8 | 11 | 22 |
綜合與實踐 | 3 | 4 | 3 | 10 |
合計 | 45 | 65 | 150 | 260 |
A.除了“綜合與實踐”外,其他三個內容領域的條目數都隨著學段的升高而增加,尤其“圖形與幾何”在第三學段急劇增加,約是第二學段的3.5倍
B.在所有內容領域中,“圖形與幾何”內容最多,占.“綜合與實踐”內容最少,約占
C.第一、二學段“數與代數”內容最多,第三學段“圖形與幾何”內容最多
D.“數與代數”內容條目數雖然隨著學段的增長而增長,而其百分比卻一直在減少.“圖形與幾何”內容條目數,百分比都隨學段的增長而增長
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校開展學生社會法治服務項目,共設置了文明交通,社區(qū)服務,環(huán)保宣傳和中國傳統(tǒng)文化宣講四個項目,現有該校的甲、乙、丙、丁4名學生,每名學生必須且只能選擇1項.
(1)求恰有2個項目沒有被這4名學生選擇的概率;
(2)求“環(huán)保宣傳”被這4名學生選擇的人數的分布列及其數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com