精英家教網 > 高中數學 > 題目詳情

【題目】直線是過點的動直線,當與圓相切時,同時也和拋物線相切.

1)求拋物線的方程;

2)直線與拋物線交于不同的兩點,與圓交于不同的兩點AB,面積為面積為,當時,求直線的方程.

【答案】12

【解析】

1)設直線,根據直線與圓相切的性質列出方程求解m,再聯(lián)立直線方程與拋物線方程得到關于y的一元二次方程,由直線l與拋物線相切得即可求得p;(2)聯(lián)立直線方程與拋物線方程,利用韋達定理及弦長公式求出,求出圓心O到直線l的距離代入求出,由,列方程求解m即可求得直線方程.

(1)由題意可知直線斜率顯然不為0 ,設直線

由題意知圓心到直線l的距離 ,

聯(lián)立直線與拋物線方程,因為直線l與拋物線相切

,解得,

拋物線的方程為.

2)聯(lián)立直線與拋物線方程,

根據題意,

,,則,

所以

圓心到直線的距離,

,,

,解得,

所以直線l的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】從某高三年級男生中隨機抽取50名測量身高,測量發(fā)現被測學生身高全部介于之間,將測量結果按如下方式分成6組:第1,第2,…,第6,如圖是按上述分組方法得到的頻率分布直方圖.

1)由頻率分布直方圖估計該校高三年級男生身高的中位數;

2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙二人進行一場比賽,該比賽采用三局兩勝制,即先獲得兩局勝利者獲得該場比賽勝利.在每一局比賽中,都不會出現平局,甲獲勝的概率都為.

1)求甲在第一局失利的情況下,反敗為勝的概率;

2)若,比賽結束時,設甲獲勝局數為,求其分布列和期望;

3)若甲獲得該場比賽勝利的概率大于甲每局獲勝的概率,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線是過點的動直線,當與圓相切時,同時也和拋物線相切.

1)求拋物線的方程;

2)直線與拋物線交于不同的兩點,與圓交于不同的兩點AB,面積為面積為,當時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數.

1)討論的單調性;

2)若上僅有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在單位圓Ox2+y21上任取一點Px,y),圓Ox軸正向的交點是A,設將OA繞原點O旋轉到OP所成的角為θ,記x,y關于θ的表達式分別為xfθ),ygθ),則下列說法正確的是( 。

A.xfθ)是偶函數,ygθ)是奇函數

B.xfθ)在為增函數,ygθ)在為減函數

C.fθ+gθ≥1對于恒成立

D.函數t2fθ+g2θ)的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx

1)討論函數fx)的單調性;

2)證明:a1時,fx+gx)﹣(1lnxe

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一項針對我國《義務教育數學課程標準》的研究,表1為各個學段每個內容主題所包含的條目數.下圖是將下表的條目數轉化為百分比,按各學段繪制的等高條形圖.由圖表分析得出以下四個結論,其中錯誤的是( )

學段

內容主題

第一學段

13年級)

第二學段

46年級)

第三學段

79年級)

合計

數與代數

21

28

49

98

圖形與幾何

18

25

87

130

統(tǒng)計與概率

3

8

11

22

綜合與實踐

3

4

3

10

合計

45

65

150

260

A.除了“綜合與實踐”外,其他三個內容領域的條目數都隨著學段的升高而增加,尤其“圖形與幾何”在第三學段急劇增加,約是第二學段的3.5

B.在所有內容領域中,“圖形與幾何”內容最多,占.“綜合與實踐”內容最少,約占

C.第一、二學段“數與代數”內容最多,第三學段“圖形與幾何”內容最多

D.“數與代數”內容條目數雖然隨著學段的增長而增長,而其百分比卻一直在減少.“圖形與幾何”內容條目數,百分比都隨學段的增長而增長

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校開展學生社會法治服務項目,共設置了文明交通,社區(qū)服務,環(huán)保宣傳和中國傳統(tǒng)文化宣講四個項目,現有該校的甲、乙、丙、丁4名學生,每名學生必須且只能選擇1項.

1)求恰有2個項目沒有被這4名學生選擇的概率;

2)求環(huán)保宣傳被這4名學生選擇的人數的分布列及其數學期望.

查看答案和解析>>

同步練習冊答案