【題目】已知雙曲線過點(diǎn)P(﹣3 ,4),它的漸近線方程為y=± x.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F1和F2為該雙曲線的左、右焦點(diǎn),點(diǎn)P在此雙曲線上,且|PF1||PF2|=41,求∠F1PF2的余弦值.

【答案】
(1)解:設(shè)雙曲線的方程為y2 x2=λ(λ≠0),

代入點(diǎn)P(﹣3 ,4),可得λ=﹣16,

∴所求求雙曲線的標(biāo)準(zhǔn)方程為


(2)解:設(shè)|PF1|=d1,|PF2|=d2,則d1d2=41,

又由雙曲線的幾何性質(zhì)知|d1﹣d2|=2a=6,

∴d12+d22﹣2d1d2=36即有d12+d22=36+2d1d2=118,

又|F1F2|=2c=10,

∴|F1F2|2=100=d12+d22﹣2d1d2cos∠F1PF2

∴cos∠F1PF2=


【解析】(1)根據(jù)待定系數(shù)法求出雙曲線的方程。(2)利用雙曲線的定義得出關(guān)系式,兩邊平方可得出d12+d22 的值,根據(jù)余弦定理可求出cos的值即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱, 平面 , 在線段 , .

1)求證: ;

2)試探究:在上是否存在點(diǎn),滿足平面,若存在請指出點(diǎn)的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點(diǎn),BD與AB1交于點(diǎn)O,且CO⊥平面ABB1A1

(1)證明:CD⊥AB1;
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱長為4的正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn),則異面直線D1E與AC所成角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1 , F2分別是C: + =1(a>b>0)的左,右焦點(diǎn),M是C上一點(diǎn)且MF2與x軸垂直,直線MF1與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(sinx﹣cosx)(0≤x≤2016π),則函數(shù)f(x)的各極大值之和為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ ]∪{ }
D.[ , )∪{ }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程 為: 橢圓的右焦點(diǎn)為 ,離心率為 ,直線 與橢圓 相交于 兩點(diǎn),且
(1)橢圓的方程
(2)求 的面積;

查看答案和解析>>

同步練習(xí)冊答案