已知冪函數(shù)f(x)的圖象經(jīng)過點(2,4),則f(5)=
 
考點:冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)出冪函數(shù)f(x)的解析式,根據(jù)圖象過點(2,4),求出解析式,計算f(5)的值.
解答: 解:設(shè)冪函數(shù)f(x)=xα,
它的圖象經(jīng)過點(2,4),
∴2α=4,
即α=2,
∴f(x)=x2;
∴f(5)=52=25.
故答案為:25.
點評:本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了待定系數(shù)法求函數(shù)解析式的問題,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)正項等差數(shù)列{an},a2,a5,a14恰好是等比數(shù)列{bn}的前三項,a2=3.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,k(Tn+
3
2
)≥3n-6恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線 y=x2 上P點處的切線平行于 2x-y+1=0,則點P的坐標是( 。
A、( 1,-1)
B、(-1,1)
C、( 1,1)
D、(-1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù):f1(x)=ln
1-x
1+x
,f2(x)=lg(x+
x2+1
),f3(x)=(x-1)
1+x
1-x
,f4(x)=
4-x2
|x+3|-3
,
f5(x)=1-
2
2x+1
,f6(x)=-xsin(
π
2
+x),則為奇函數(shù)的有( 。﹤.
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(-2,y)是角θ終邊上一點,且sinθ=-
5
5

(1)求cosθ的值;
(2)求sin(π+θ)cos(3π-θ)sin(
π
2
+θ)tan(101π+θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x3-
9
2
x2+6x-a.
(Ⅰ)對于任意實數(shù)x1,x2∈[-1,0],求證:|f′(x1)-f′(x2)|≤12;
(Ⅱ)若方程f(x)=0有且僅有三個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線3x-4y-9=0與圓x2+y2=4的位置關(guān)系是( 。
A、相交且過圓心B、相切
C、相離D、相交但不過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),但x≤0時,f(x)=x2+x,則關(guān)于x的不等式f(x)<-2的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別是a,b,c,且sin2A+
1
2
sinBsinC=sin2B+sin2C.
(1)求sin2
B+C
2
+cos 2A的值;
(2)若a=4,b+c=6,且b<c,求△ABC的面積.

查看答案和解析>>

同步練習冊答案