(2013•梅州二模)如圖,側(cè)棱垂直底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0).
(Ⅰ)當(dāng)AA1=AB=AC時,求證:A1C⊥平面ABC1
(Ⅱ)若二面角A-BC1-C的平面角的余弦值為
10
10
,試求實數(shù)t的值.
分析:(Ⅰ)以AB,AC,AA1所在直線為x,y,z軸建立空間直角坐標系,利用向量的數(shù)量積證明
A1C
AC1
,
A1C
AB
,從而可知A1C⊥平面ABC1
(Ⅱ)求出平面ABC1的法向量
n
=(0,2t-3,t)、平面BCC1的法向量
m
=(1,1,0),利用向量的夾角公式,建立方程,即可求得結(jié)論.
解答:(Ⅰ)證明:∵AA1⊥面ABC,∴AA1⊥AC,AA1⊥AB.
又∵AB⊥AC,∴分別以AB,AC,AA1所在直線為x,y,z軸建立空間直角坐標系.…(1分)
則A(0,0,0),C1(0,1,1),B(1,0,0),C(0,1,0),A1(0,0,1),
A1C
=(0,1,-1),
AC1
=(0,1,1),
AB
=(1,0,0)
,
A1C
AC1
=0
,
A1C
AB
=0
,…(2分)
A1C
AC1
A1C
AB
.…(3分)
又∵AC1∩AB=A
∴A1C⊥平面ABC1.…(4分)
(Ⅱ)解:分別以AB,AC,AA1所在直線為x,y,z軸建立空間直角坐標系.
則A(0,0,0),C1(0,t,3-2t),B(t,0,0),C(0,t,0),A1(0,0,3-2t),
A1C
=(0,2,2t-3),
AC1
=(0,t,3-2t),
AB
=(t,0,0)
,
CC1
=(0,0,3-2t)
,
BC
=(-t,t,0)
.…(6分)
設(shè)平面ABC1的法向量
n
=(x,y,z),
ty+(3-2t)z=0
tx=0
,令z=t,則
n
=(0,2t-3,t).…(8分)
同理可求平面BCC1的法向量
m
=(1,1,0).…(10分)
設(shè)二面角A-BC1-C的平面角為θ,
則有|cosθ|=|
n
m
|
n
||
m
|
|=
|2t-3|
2
×
t2+(2t-3)2
=
10
10

化簡得5t2-16t+12=0,解得t=2(舍去)或t=
6
5

所以當(dāng)t=
6
5
時,二面角A-BC1-C的平面角的余弦值為
10
10
.…(12分)
點評:本小題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力、推理論證能力及運算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想及應(yīng)用意識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州二模)有甲乙兩個班進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表.
優(yōu)秀 非優(yōu)秀 總計
甲班 10
乙班 30
合計 105
已知在全部105人中隨機抽取1人為優(yōu)秀的概率為
2
7

(1)請完成上面的聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生抽取一人:把甲班10優(yōu)秀的學(xué)生按2到11進行編號,先后兩次拋擲一枚骰子,出現(xiàn)的點數(shù)之和為被抽取的序號.試求抽到6號或10號的概率.
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
概率表
P(K2≥k0 0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州二模)已知函數(shù)f(x)=
lnx
x
的圖象為曲線C,函數(shù)g(x)=
1
2
ax+b的圖象為直線l.
(1)當(dāng)a=2,b=-3時,求F(x)=f(x)-g(x)的最大值;
(2)設(shè)直線l與曲線C的交點的橫坐標分別為x1,x2,且x1≠x2,求證:(x1+x2)g(x1+x2)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州二模)sin660°的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州二模)已知min{a,b}=
a
b
(a≤b),
(a>b)
,設(shè)f(x)=min{x3,
1
x
}
,則由函數(shù)f(x)的圖象與x軸、直線x=e所圍成的封閉圖形的面積為
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•梅州二模)某幼兒園為訓(xùn)練孩子的數(shù)字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數(shù)字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字
(1)求取出的3張卡片上的數(shù)字互不相同的概率;
(2)求隨機變量X的分布列及數(shù)學(xué)期望;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率.

查看答案和解析>>

同步練習(xí)冊答案