(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點.
(1)當時,求平面與平面的夾角的余弦值;
(2)當為何值時,在棱上存在點,使平面?
(1)(2)2
解析試題分析:(1)分別取、的中點、,連接、.
以直線、、分別為軸、軸、軸建立如圖所示的空間直角坐標系,
,則、、的坐標分別為
(1,0,1)、(0,,3)、(-1,0,4),
∴=(-1,,2),=(-2,0,3)
設平面的法向量,
由得
,可取 …… 3分
平面的法向量可以取
∴ …… 5分
∴平面與平面的夾角的余弦值為. ……6分
(2)在(1)的坐標系中,,=(-1,,2),=(-2,0,-1).
因在上,設,則
∴
于是平面的充要條件為
由此解得, ……10分
即當=2時,在上存在靠近的第一個四等分點,使平面. ……12分
考點:空間向量求解二面角,判定線面垂直
點評:空間向量解決立體幾何問題的關鍵是建立合適的坐標系,找準相關點的坐標
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐中,底面ABCD是一直角梯形,,,,且PA=AD=DC=AB=1.
(1)證明:平面平面
(2)設AB,PA,BC的中點依次為M、N、T,求證:PB∥平面MNT
(3)求異面直線與所成角的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是底面邊長的倍,P為側棱SD上的點.
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,則側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中點,AB=AC=BE=2,CD=1
(Ⅰ)求證:DC∥平面ABE;
(Ⅱ)求證:AF⊥平面BCDE;
(Ⅲ)求證:平面AFD⊥平面AFE.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖所示,四棱錐中,底面為正方形,平面,,,,分別為、、的中點.
(1)求證:;
(2)求平面EFG與平面ABCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點.AC,BD交于O點.
(1)二面角Q-BD-C的大。
(2)求二面角B-QD-C的大。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四面體ABCD中,O、E分別是BD、BC的中點,
(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點E到平面ACD的距離。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(Ⅰ)求證:AD⊥平面SBC;
(Ⅱ)試在SB上找一點E,使得平面ABS⊥平面ADE,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com