精英家教網 > 高中數學 > 題目詳情
已知為直角坐標系原點,的坐標均滿足不等式組,則的最小值等于         
先畫出不等式組對應的平面區(qū)域,利用余弦函數在[0,]上是減函數,再找到∠POQ最大時對應的點的坐標,就可求出cos∠POQ的最小值.
解:滿足不等式組的平面區(qū)域如下圖示:

因為余弦函數在[0,]上是減函數,所以角最大時對應的余弦值最小,
由圖得,當P與A(7,1)重合,Q與B(4,3)重合時,角POQ最大.
此時kOB=,k0A=7.由tan∠POQ==1?∠POQ=?cos∠POQ=
故答案為:
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知滿足約束條件,的最小值是(    )
A              B             C              D

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在直角坐標系中,若不等式組表示一個三角形區(qū)域,則實數的取值范圍是               

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知變量x、y滿足條件的最大值是(     )
A.2B.5C.6D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

某企業(yè)生產甲、乙兩種產品,已知生產每噸甲產品要用3t原料A,2t天然氣B;生產每噸乙產品要用1t原料A,3t天然氣B,銷售每噸甲產品可獲得利潤5萬元,銷售每噸乙產品可獲得利潤3萬元.若該企業(yè)在一個生產周期內消耗的原料A不超過13t,B不超過18t,則該企業(yè)可獲得最大利潤為______萬元.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知關于x的二次函數f(x)=ax2-4bx+1
(Ⅰ)設集合P={1,2,3},集合Q={-1,1,2,3,4},從集合P中隨機取一個數作為a,從集合Q中隨機取一個數作為b,求函數f(x)在區(qū)間[1,+∞)上是增函數的概率;
(Ⅱ)設點(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內的隨機點,求函數f(x)在區(qū)間[1,+∞)上是增函數的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知實數x,y滿足不等式組
x+3y-3≥0
2x-y-3≤0
x-y+1≥0
,則
y-1
x+1
的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

實數x,y滿足不等式組
x-y+5≥0
x+y≥0
x≤3
,那么目標函數z=2x+4y的最小值是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若變量滿足的最大值是           

查看答案和解析>>

同步練習冊答案