設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為,過點(diǎn)與垂直的直線分別交橢圓和軸正半軸于,兩點(diǎn),且分向量所成的比為8∶5.
(1)求橢圓的離心率;
(2)若過三點(diǎn)的圓恰好與直線:相切,求橢圓方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09 年聊城一模理)(12分)
已知橢圓:的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切。
(Ⅰ)求橢圓的方程;
(II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(III)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(III)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂
直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱,若存在,
求出的斜率范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷十文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為,過點(diǎn)與垂直的直線分別交橢圓與軸正半軸于點(diǎn),且. ⑴求橢圓的離心率;⑵若過、、三點(diǎn)的圓恰好與直線相切,求橢圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com