【題目】已知函數(shù)f(x)=ex﹣ax,a>0.
(1)記f(x)的極小值為g(a),求g(a)的最大值;
(2)若對任意實數(shù)x恒有f(x)≥0,求f(a)的取值范圍.

【答案】
(1)解:函數(shù)f(x)的定義域是(﹣∞,+∞),f'(x)=ex﹣a,

令f'(x)>0,得x>lna,所以f(x)的單調遞增區(qū)間是(lna,+∞);

令f'(x)<0,得x<lna,所以f(x)的單調遞減區(qū)間是(﹣∞,lna),

函數(shù)f(x)在x=lna處取極小值,

g'(a)=1﹣(1+lna)=﹣lna,

當0<a<1時,g'(a)>0,g(a)在(0,1)上單調遞增;

當a>1時,g'(a)<0,g(a)在(1,+∞)上單調遞減,

所以a=1是函數(shù)g(a)在(0,+∞)上唯一的極大值點,也是最大值點,

所以g(a)max=g(1)=1


(2)解:當x≤0時,a>0,ex﹣ax≥0恒成立,

當x>0時,f(x)≥0,即ex﹣ax≥0,即

,

當0<x<1時,h'(x)<0,當x>1時,h'(x)>0,

故h(x)的最小值為h(1)=e,

所以a≤e,故實數(shù)a的取值范圍是(0,e]

f(a)=ea﹣e2,a∈(0,e],f'(a)=ea﹣2a,由上面可知ea﹣2a≥0恒成立,

故f(a)在(0,e]上單調遞增,所以f(0)=1<f(a)≤f(e)=ee﹣e2,

即f(a)的取值范圍是(1,ee﹣e2]


【解析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的極小值g(a)的表達式,根據(jù)函數(shù)的單調性求出g(a)的最大值即可;(2)通過討論x的范圍,問題轉化為 ,根據(jù)函數(shù)的單調性求出f(a)的范圍即可.
【考點精析】解答此題的關鍵在于理解函數(shù)的極值與導數(shù)的相關知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值,以及對函數(shù)的最大(小)值與導數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)證明函數(shù)為奇函數(shù);

(2)判斷函數(shù)的單調性(無需證明),并求函數(shù)的值域;

(3)是否存在實數(shù),使得的最大值為?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)某班同學利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(1)補全頻率分布直方圖并求、、的值;

(2)從歲年齡段的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗活動,其中選取人作為領隊,記選取的名領隊中年齡在歲的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個直角三角形的三個頂點分別在底面棱長為2的正三棱柱的側棱上,則該直角三角形斜邊的最小值為__________

【答案】

【解析】如圖,不妨設處, ,
則有
該直角三角形斜邊

故答案為.

型】填空
束】
16

【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.

(Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關系式;

(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在(,]n=1,2,3,4,5)時,日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:

①根據(jù)以上數(shù)據(jù),設每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學期望及方差;

②結合①中的數(shù)據(jù),根據(jù)統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。

(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

【答案】甲方案的函數(shù)關系式為: ,乙方案的函數(shù)關系式為:;(Ⅱ)①見解析,②見解析.

【解析】

由題意可得甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為: , 乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為:.

①由題意求得X的分布列,據(jù)此計算可得,,.

②答案一:由以上的計算可知,遠小于,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.

答案二:由以上的計算結果可以看出,,所以小明應選擇乙方案.

Ⅰ)甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為: ,

乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為:

①由已知,在這100天中,該公司派送員日平均派送單數(shù)滿足如下表格:

單數(shù)

52

54

56

58

60

頻率

0.2

0.3

0.2

0.2

0.1

所以的分布列為:

152

154

156

158

160

0.2

0.3

0.2

0.2

0.1

所以

所以的分布列為:

140

152

176

200

0.5

0.2

0.2

0.1

所以

②答案一:由以上的計算可知,雖然,但兩者相差不大,且遠小于,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.

答案二:由以上的計算結果可以看出,,即甲方案日工資期望小于乙方案日工資期望,所以小明應選擇乙方案.

【點睛】

本題主要考查頻率分布直方圖,數(shù)學期望與方差的含義與實際應用等知識,意在考查學生的轉化能力和計算求解能力.

型】解答
束】
20

【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=sinx﹣cosx,x∈[0,+∞).
(1)證明: ;
(2)證明:當a≥1時,f(x)≤eax﹣2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x,y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為(
A. 或﹣1
B.2或
C.2或﹣1
D.2或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次考試共有10道選擇題,每道選擇題都有4個選項,其中有且只有一個是正確的.評分標準規(guī)定:每題只選一個選項,答對得5分,不答或答錯得零分.某考生已確定有7道題的答案是正確的,其余題中:有一道題都可判斷兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只好亂猜.試求出該考生:

Ⅰ)得50分的概率;

Ⅱ)所得分數(shù)的數(shù)學期望(用小數(shù)表示,精確到0.01k^s*5#u)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+2 sinωxcosωx﹣1,且f(x)的周期為2.
(Ⅰ)當 時,求f(x)的最值;
(Ⅱ)若 ,求 的值.

查看答案和解析>>

同步練習冊答案