已知函數(shù)f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直線m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直線m既是曲線y=f(x)的切線,又是曲線y=g(x)的切線?如果存在,求出k的值;如果不存在,說明理由.
(1) a=-2  (2) 公切線是y=9,此時(shí)k=0
(1)f'(x)=3ax2+6x-6a,f'(-1)=0,
即3a-6-6a=0,∴a=-2.
(2)存在.∵直線m恒過定點(diǎn)(0,9),直線m是曲線y=g(x)的切線,設(shè)切點(diǎn)為(x0,3+6x0+12),
∵g'(x0)=6x0+6,
∴切線方程為y-(3+6x0+12)=(6x0+6)(x-x0),將點(diǎn)(0,9)代入,得x0=±1,
當(dāng)x0=-1時(shí),切線方程為y=9;
當(dāng)x0=1時(shí),切線方程為y=12x+9.
由f'(x)=0得-6x2+6x+12=0,
即有x=-1或x=2,
當(dāng)x=-1時(shí),y=f(x)的切線方程為y=-18;
當(dāng)x=2時(shí),y=f(x)的切線方程為y=9.
∴公切線是y=9.
又令f'(x)=12得-6x2+6x+12=12,
∴x=0或x=1.
當(dāng)x=0時(shí),y=f(x)的切線方程為y=12x-11;
當(dāng)x=1時(shí),y=f(x)的切線方程為y=12x-10,
∴公切線不是y=12x+9.
綜上所述公切線是y=9,此時(shí)k=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(a為實(shí)數(shù)).
(1) 當(dāng)a=5時(shí),求函數(shù)處的切線方程;
(2) 求在區(qū)間)上的最小值;
(3) 若存在兩不等實(shí)根,使方程成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a,b∈R,函數(shù)f(x)=a+ln(x+1)的圖象與g(x)=x3x2bx的圖象在交點(diǎn)(0,0)處有公共切線.
(1)證明:不等式f(x)≤g(x)對(duì)一切x∈(-1,+∞)恒成立;
(2)設(shè)-1<x1x2,當(dāng)x∈(x1,x2)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間及極值;
(2)求證:當(dāng)a>ln2-1且x >0時(shí),ex>x2-2ax+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的單調(diào)區(qū)間,并證明對(duì)[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個(gè)單位,同時(shí)將y=g(x)的圖像向上平移b(b>0)個(gè)單位,使它們恰有四個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1處的切線方程.
(2)若不等式f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若存在過點(diǎn)(1,0)的直線與曲線y=x3和y=ax2+x-9都相切,則a等于(  )
A.-1或-B.-1或
C.-或-D.-或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知、都是定義在R上的函數(shù),,,,,則關(guān)于x的方程)有兩個(gè)不同實(shí)根的概率為     .

查看答案和解析>>

同步練習(xí)冊(cè)答案