已知函數(shù)f(x)=
(x2-2ax)ex,x>0
bx,x≤0
,g(x)=clnx+b
,且x=
2
是函數(shù)y=f(x)的極值點(diǎn).
(I)求實(shí)數(shù)a的值,并確定實(shí)數(shù)m的取值范圍,使得函數(shù)?(x)=f(x)-m有兩個(gè)零點(diǎn);
(II)是否存在這樣的直線l,同時(shí)滿足:①l是函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線;  ②l與函數(shù)y=g(x)的圖象相切于點(diǎn)P(x0,y0),x0∈[e-1,e],如果存在,求實(shí)數(shù)b的取值范圍;不存在,請(qǐng)說明理由.
分析:(Ⅰ)先求出其導(dǎo)函數(shù),利用x=
2
是函數(shù)y=f(x)的極值點(diǎn)對(duì)應(yīng) f′(
2
)=0
,求出a的值,進(jìn)而求出函數(shù)f(x)的單調(diào)性;函數(shù)y=f(x)-m有兩個(gè)零點(diǎn),轉(zhuǎn)化為函數(shù)y=f(x)的圖象與直線y=m有兩個(gè)不同的交點(diǎn),利用導(dǎo)函數(shù)求出函數(shù)y=f(x)的單調(diào)區(qū)間,畫出草圖,結(jié)合圖象即可求出實(shí)數(shù)m的取值范圍.
(II)利用導(dǎo)函數(shù)分別求出兩個(gè)函數(shù)的切線方程,利用方程相等,對(duì)應(yīng)項(xiàng)系數(shù)相等即可求出關(guān)于實(shí)數(shù)b的等式,再借助于其導(dǎo)函數(shù)即可求出實(shí)數(shù)b的取值范圍.(注意范圍限制).
解答:解:(I)x>0時(shí),f(x)=(x2-2ax)ex,∴f'(x)=(2x-2a)ex+(x2-2ax)ex=[x2+2(1-a)x-2a]ex
由已知,f′(
2
)=0
[2+2
2
(1-a)-2a]e
2
=0
,∴2+2
2
-2a-2
2
a=0

得a=1,所以x>0時(shí),f(x)=(x2-2x)ex,∴f'(x)=(2x-2)ex+(x2-2x)ex=(x2-2)ex.(3分)
令f'(x)=0得x=
2
(x=-
2
舍去).

當(dāng)x>0時(shí),
當(dāng)x∈(0,
2
)
時(shí),f(x)單調(diào)遞減,f(x)∈((2-2
2
)e
2
,0)

當(dāng)x∈(
2
,+∞)
f(x)單調(diào)遞增,f(x)∈((2-2
2
)e
2
,+∞)
∴x>0時(shí),f(x)∈((2-2
2
)e
2
,+∞)

要使函數(shù)?(x)=f(x)-m有兩個(gè)零點(diǎn),即方程f(x)-m=0有兩不相等的實(shí)數(shù)根,也即函數(shù)y=f(x)的圖象與直線y=m有兩個(gè)不同的交點(diǎn).
(1)當(dāng)b>0時(shí),m=0或m=(2-2
2
)e
2
;
(2)當(dāng)b=0時(shí),m∈(2-2
2
)e
2
,0)
;
(3)當(dāng)b<0時(shí),m∈((2-2
2
)e
2
,+∞)
.(6分)
(II)假設(shè)存在,x>0時(shí),f(x)=(x2-2x)ex,f'(x)=(x2-2)ex,∴f(2)=0,f'(2)=2e2
函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線l的方程為:y=2e2(x-2),
因直線l與函數(shù)g(x)的圖象相切于點(diǎn)P(x0,y0),x0∈[e-1,e],∴y0=clnx0+b.g′(x)=
c
x

所以切線l的斜率為g′(x)=
c
x0
,
所以切線l的方程為:y-y0=
c
x0
(x-x0)
即l的方程為:y=
c
x0
x-c+b+clnx0

c
x0
=2e2
-c+b+clnx0=-4e2
c=2e2x0
b=c-clnx0-4e2

得b=2e2(x0-x0lnx0-2)其中x0∈[e-1,e](10分)
記h(x0)=2e2(x0-x0lnx0-2)其中x0∈[e-1,e],h'(x0)=-2e2lnx0
令h'(x0)=0,得x0=1.

又h(e)=-4e2,h(e-1)=4e-4e2>-4e2.∵x0∈[e-1,e],∴h(x0)∈[-4e2,-2e2],
所以實(shí)數(shù)b的取值范圍為:b|-4e2≤b≤-2e2.(14分)
點(diǎn)評(píng):本題第一問主要研究利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性時(shí),一般結(jié)論是:導(dǎo)數(shù)大于0對(duì)應(yīng)區(qū)間為原函數(shù)的遞增區(qū)間;導(dǎo)數(shù)小于0對(duì)應(yīng)區(qū)間為原函數(shù)的遞減區(qū)間.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案