【題目】設(shè)集合M={x|x2+3x+2<0},集合 ,則M∪N=(
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}

【答案】A
【解析】解答:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1}, 集合 ={x|2x≤22}={x|﹣x≤2}={x|x≥﹣2},
∴M∪N={x|x≥﹣2},
故選A.
分析:根據(jù)題意先求出集合M和集合N,再求M∪N.
【考點精析】關(guān)于本題考查的解一元二次不等式,需要了解求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的左右頂點分別是,為直線上一點(點在軸的上方),直線與橢圓的另一個交點為,直線與橢圓的另一個交點為.

(1)若的面積是的面積的,求直線的方程;

(2)設(shè)直線與直線的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】E是正方形ABCD的邊CD的中點,將△ADEAE旋轉(zhuǎn),則直線AD與直線BE所成角的余弦值的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四面體ABCD中,ABC是以BC為斜邊的等腰直角三角形,BCD是邊長為2的正三角形.

(Ⅰ)當AD為多長時,

(Ⅱ)當二面角BACD時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)e<x<10,記a=ln(lnx),b=lg(lgx),c=ln(lgx),d=lg(lnx),則a,b,c,d的大小關(guān)系(
A.a<b<c<d
B.c<d<a<b
C.c<b<d<a
D.b<d<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過邊界CD上的點E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.

(1)如圖①,若E為CD的中點,F(xiàn)在邊界AB上,求灌溉水管EF的長度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命題“l(fā)og2g(x)<1”是真命題,求x的取值范圍;
g(x)<0.若p∧q是真命題,求m的取值范圍.
(2)設(shè)命題p:x∈(1,+∞),f(x)<0或g(x)<0;命題q:x∈(﹣1,0),f(x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《九章算術(shù)》中“開立圓術(shù)”曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術(shù)”相當于給出了已知球的體積V,求其直徑d的一個近似公式d≈ .人們還用過一些類似的近似公式.根據(jù)π=3.14159…..判斷,下列近似公式中最精確的一個是(
A.d≈
B.d≈
C.d≈
D.d≈

查看答案和解析>>

同步練習冊答案