【題目】某學(xué)校在學(xué)校內(nèi)招募了名男志愿者和名女志愿者,將這名志愿者的身高編成如莖葉圖所示(單位:),若身高在以上(包括)定義為“高個(gè)子”,身高在以下(不包括)定義為“非高個(gè)子”。
(Ⅰ)根據(jù)數(shù)據(jù)分別寫出男、女兩組身高的中位數(shù);
(Ⅱ)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,則各抽幾人?
(Ⅲ)在(Ⅱ)的基礎(chǔ)上,從這人中選人,那么至少有一人是“高個(gè)子”的概率是多少?
【答案】(Ⅰ)男生中位數(shù)為177cm,女生的中位數(shù)為166.5cm;(Ⅱ)答案見解析;(Ⅲ).
【解析】
(I)由莖葉圖中的數(shù)據(jù)結(jié)合中位數(shù)的定義計(jì)算中位數(shù)即可;
(Ⅱ)根據(jù)莖葉圖,有“高個(gè)子”12人,“非高個(gè)子”18人,結(jié)合分層抽樣的方法可得要抽取的人數(shù)的個(gè)數(shù);
(Ⅲ)利用列舉法可得所有的選取方式有10種情形,滿足至少有1人是高個(gè)子的有7種情形,結(jié)合古典概型計(jì)算公式確定概率值即可.
(I)由莖葉圖可知:男生中位數(shù)為:177cm,
女生的中位數(shù)為:166.5cm;
(Ⅱ)根據(jù)莖葉圖,有“高個(gè)子”12人,“非高個(gè)子”18人,
所以利用分層抽樣的方法所抽取的“高個(gè)子”的人數(shù)為人,
抽取的“非高個(gè)子”的人數(shù)為人;
(Ⅲ)設(shè)“至少有一人是“高個(gè)子””為事件A,
設(shè)高個(gè)子中選出的2人記為a,b,非高個(gè)子選出的3人記為1,2,3,
則所有的選取方式有:
(a,b),(a,1),(a,2),(a,3),(b,1),
(b,2),(b,3),(1,2)(1,3),(2,3)共10種情形,
其中滿足至少有1人是高個(gè)子的有:
(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),共7種情形,
故所求的概率為:.
即至少有一人是“高個(gè)子”的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計(jì)數(shù)的.
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;
(2)估計(jì)該公司投入4萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 1 | 3 | 4 | 7 |
表中的數(shù)據(jù)顯示,x與y之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計(jì)算y關(guān)于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點(diǎn)為頂點(diǎn),直線為準(zhǔn)線的拋物線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求出直線與曲線的極坐標(biāo)方程:
(2)點(diǎn)是曲線上位于第一象限內(nèi)的一個(gè)動點(diǎn),點(diǎn)是直線上位于第二象限內(nèi)的一個(gè)動點(diǎn),且,請求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=c.
(1)若c=1,sinC=,求ABC的面積S;
(2)若D是AC的中點(diǎn),且cosB=,BD=,求ABC的三邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手射擊1次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,有下列結(jié)論:
①他第3次擊中目標(biāo)的概率是0.9;
②他恰好擊中目標(biāo)3次的概率是;
③他至少擊中目標(biāo)1次的概率是;
④他至多擊中目標(biāo)1次的概率是
其中正確結(jié)論的序號是( )
A.①②③B.①③
C.①④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,拋物線上的兩個(gè)動點(diǎn)A,B始終滿足∠AFB=60°,過弦AB的中點(diǎn)H作拋物線的準(zhǔn)線的垂線HN,垂足為N,則的取值范圍為
A.(0,]B.[,+∞)
C.[1,+∞)D.(0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間四邊形ABCD的邊AB,BC,CD,DA上分別取點(diǎn)E,F(xiàn),G,H,如果EH,F(xiàn)G相交于一點(diǎn)M,那么M一定在直線________上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機(jī)摘下了100個(gè)黃桃進(jìn)行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計(jì)質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機(jī)抽取5個(gè),再從這5個(gè)黃桃中隨機(jī)抽2個(gè),求這2個(gè)黃桃質(zhì)量至少有一個(gè)不小于400克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個(gè)黃桃待出售,某電商提出兩種收購方案:
A.所有黃桃均以20元/千克收購;
B.低于350克的黃桃以5元/個(gè)收購,高于或等于350克的以9元/個(gè)收購.
請你通過計(jì)算為該村選擇收益最好的方案.
(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com