【題目】綜合題
(1)解不等式:3≤x2﹣2x<8;
(2)已知a,b,c,d均為實(shí)數(shù),求證:(a2+b2)(c2+d2)≥(ac+bd)2

【答案】
(1)解:不等式:3≤x2﹣2x<8,

即: ,解得: ,即x∈(﹣2,﹣1]∪[3,4).


(2)證明:∵(a2+b2)(c2+d2)﹣(ac+bd)2

=a2c2+a2d2+b2c2+b2d2﹣a2c2﹣2abcd﹣b2d2

=a2d2+b2c2﹣2abcd

=(ad﹣bc)2≥0

∴(a2+b2)(c2+d2)≥(ac+bd)2


【解析】(1)直接利用二次不等式化簡求解即可.(2)利用作差法化簡,證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解不等式的證明的相關(guān)知識,掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,
(1)若△ABC的面積等于 ,求a,b;
(2)若sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記[x]表示不超過x的最大整數(shù),如[1.2]=1,[0.5]=0,則方程[x]﹣x=lnx的實(shí)數(shù)根的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京市為了緩解交通壓力,計(jì)劃在某路段實(shí)施“交通限行”,為調(diào)查公眾對該路段“交通限行”的態(tài)度,某機(jī)構(gòu)從經(jīng)過該路段的人員中隨機(jī)抽查了80人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理,制成表:

年齡(歲)

[15,30)

[30,45)

[45,60)

[60,75)

人數(shù)

24

26

16

14

贊成人數(shù)

12

14

x

3


(1)若經(jīng)過該路段的人員對“交通限行”的贊成率為0.40,求x的值;
(2)在(1)的條件下,若從年齡在[45,60),[60,75)內(nèi)的兩組贊成“交通限行”的人中在隨機(jī)選取2人進(jìn)行進(jìn)一步的采訪,求選中的2人中至少有1人來自[60,75)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,令h(x)=g(1﹣x2),則關(guān)于函數(shù)y=h(x)的下列4個(gè)結(jié)論: ①函數(shù)y=h(x)的圖象關(guān)于原點(diǎn)對稱;
②函數(shù)y=h(x)為偶函數(shù);
③函數(shù)y=h(x)的最小值為0;
④函數(shù)y=h(x)在(0,1)上為增函數(shù)
其中,正確結(jié)論的序號為 . (將你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代城市大多是棋盤式布局(如上海道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義A(x1 , y1)、B(x2 , y2)兩點(diǎn)間的“直角距離”為:DAB)=|x1﹣x2|+|y1﹣y2|.

(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”
為2的“格點(diǎn)”的坐標(biāo);(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)定義:“圓”是所有到定點(diǎn)“直角距離”為定值的點(diǎn)組成的圖形,點(diǎn)A(1,3),B(1,1),C(3,3),求經(jīng)過這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫出大致圖象;
(3)設(shè)P(x,y),集合B表示的是所有滿足DPO≤1的點(diǎn)P所組成的集合,
點(diǎn)集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=b+logax(x>0且a≠1)的圖象經(jīng)過點(diǎn)(8,2)和(1,﹣1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求實(shí)數(shù)x的值;
(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{bn}的前n項(xiàng)和是Sn , 且bn=1﹣2Sn , 又?jǐn)?shù)列{an}、{bn}滿足點(diǎn){an , 3 }在函數(shù)y=( x的圖象上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=anbn+ ,求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正弦曲線y=sinx上所有的點(diǎn)向右平移 π個(gè)單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼? 倍(縱坐標(biāo)不變),則所得到的圖象的函數(shù)解析式y(tǒng)=

查看答案和解析>>

同步練習(xí)冊答案