(本題滿分16分)已知函數(shù)()
(1) 當a = 0時, 求函數(shù)在區(qū)間[0, 2]上的最大值;
(2) 若函數(shù)在區(qū)間[0, 2]上的最大值為2, 求a的取值范圍.
(1)2(2)
【解析】解:(1)當a = 0時, f (x)=x3-4x2+5x ,
…3分
因為f (0)=0,f (1)=2,f ()=0,f (2)=2,
所以區(qū)間[0, 2]上最大值2……6分
(2)一方面由題意, 得 即 …………………………………9分
另一方面當時, f (x) = (-2x3+9x2-12x+4)a+x3-4x2+5x ,
令g(a) = (-2x3+9x2-12x+4)a+x3-4x2+5x,
則g(a) ≤ max{ g(0), g() }
= max{x3-4x2+5x , (-2x3+9x2-12x+4)+x3-4x2+5x }
= max{x3-4x2+5x , x2-x+2 },
f (x) = g(a)≤ max{x3-4x2+5x , x2-x+2 },………………………13分
又{x3-4x2+5x}=2, {x2-x+2}=2, 且f (2)=2,
所以當時, f (x)在區(qū)間[0,2]上的最大值是2.
綜上, 所求 a的取值范圍是 ……………………………………………16分
科目:高中數(shù)學 來源:2010-2011年江蘇省淮安市楚州中學高二上學期期末考試數(shù)學試卷 題型:解答題
(本題滿分16分)
已知函數(shù),且對任意,有.
(1)求;
(2)已知在區(qū)間(0,1)上為單調函數(shù),求實數(shù)的取值范圍.
(3)討論函數(shù)的零點個數(shù)?(提示:)
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省高三10月階段性測試理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)為實常數(shù)).
(I)當時,求函數(shù)在上的最小值;
(Ⅱ)若方程在區(qū)間上有解,求實數(shù)的取值范圍;
(Ⅲ)證明:
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江蘇省高二下期中理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分16分) 已知橢圓:的離心率為,分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設為橢圓上任意一點,以為圓心,為半徑作圓,當圓與橢圓的右準線有公共點時,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇省高一上學期期中考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當時,。
(Ⅰ)求及的值;
(Ⅱ)求函數(shù)在上的解析式;
(Ⅲ)若關于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省2009-2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com