【題目】(本小題滿分12分)

如圖,在五棱錐中,,且.

(1)已知點(diǎn)在線段上,確定的位置,使得;

(2)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,恰好重合,求直線與平面所成角的正弦值.

【答案】(1)點(diǎn)為靠近的三等分點(diǎn);(2).

【解析】

試題分析:(1)當(dāng)點(diǎn)為靠近的三等分點(diǎn)時(shí),在線段取一點(diǎn),使得,連結(jié),可證四邊形為平行四邊形,得,再根據(jù)比例關(guān)系得,從而得平面平面,進(jìn)而得結(jié)論;(2)如圖,建立空間直角坐標(biāo)系,可得,再列方程組求出平面的一個(gè)法向量,根據(jù)空間向量夾角余弦公式求解即可.

試題解析:(1)點(diǎn)為靠近的三等分點(diǎn).

在線段取一點(diǎn),使得,連結(jié).

.

,四邊形為平行四邊形,.

點(diǎn)為靠近的三等分點(diǎn),.

,而.

(2)取的中點(diǎn),連接,,又,

.

如圖,建立空間直角坐標(biāo)系,則.

設(shè).

翻折后,重合,,又.

,從而,.

.

設(shè)為平面的一個(gè)法向量,

,則.

設(shè)直線與平面所成角為,則,

故直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)寫出所有與終邊相同的角;

(2)寫出在內(nèi)與終邊相同的角;

(3)若角終邊相同,則是第幾象限的角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

知直線參數(shù)方程為參數(shù),若以直坐標(biāo)系點(diǎn)為極點(diǎn),方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線極坐標(biāo)方程為.

1求直線傾斜角和曲線直角坐標(biāo)方程;

2直線曲線、兩點(diǎn),設(shè)點(diǎn),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列為等比數(shù)列,等差數(shù)列的前項(xiàng)和為,且滿足:

.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求;

(3)設(shè),問是否存在正整數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費(fèi)用500元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時(shí),支付的保險(xiǎn)費(fèi)用為4000元.

(Ⅰ)求該博物館支付總費(fèi)用與保護(hù)罩容積之間的函數(shù)關(guān)系式;

(Ⅱ)求該博物館支付總費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足

1)求證:數(shù)列為等比數(shù)列;

2)若,求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足

(1)求證:數(shù)列為等比數(shù)列;

(2)若,求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

同步練習(xí)冊答案