【題目】(本小題滿分12分)
如圖,在五棱錐中,,且.
(1)已知點(diǎn)在線段上,確定的位置,使得;
(2)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,與恰好重合,求直線與平面所成角的正弦值.
【答案】(1)點(diǎn)為靠近的三等分點(diǎn);(2).
【解析】
試題分析:(1)當(dāng)點(diǎn)為靠近的三等分點(diǎn)時(shí),在線段取一點(diǎn),使得,連結(jié),可證四邊形為平行四邊形,得,再根據(jù)比例關(guān)系得,從而得平面平面,進(jìn)而得結(jié)論;(2)如圖,建立空間直角坐標(biāo)系,可得,再列方程組求出平面的一個(gè)法向量,根據(jù)空間向量夾角余弦公式求解即可.
試題解析:(1)點(diǎn)為靠近的三等分點(diǎn).
在線段取一點(diǎn),使得,連結(jié).
.
又,四邊形為平行四邊形,.
點(diǎn)為靠近的三等分點(diǎn),.
,而.
(2)取的中點(diǎn),連接,,又,
.
如圖,建立空間直角坐標(biāo)系,則.
設(shè).則
翻折后,與重合,,又.
故,從而,.
.
設(shè)為平面的一個(gè)法向量,
則
取,則.
設(shè)直線與平面所成角為,則,
故直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系的點(diǎn)為極點(diǎn),方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為.
(1)求直線的傾斜角和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè)點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列為等比數(shù)列,等差數(shù)列的前項(xiàng)和為,且滿足:
.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求;
(3)設(shè),問是否存在正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費(fèi)用500元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時(shí),支付的保險(xiǎn)費(fèi)用為4000元.
(Ⅰ)求該博物館支付總費(fèi)用與保護(hù)罩容積之間的函數(shù)關(guān)系式;
(Ⅱ)求該博物館支付總費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 經(jīng)過橢圓: 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓于, 兩點(diǎn),且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com