【題目】已知函數(shù),(其中為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調性;
(2)當時,函數(shù)有最小值,求函數(shù)的值域.
【答案】(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2).
【解析】
(1)求出導數(shù),分成,兩種情況求導數(shù)為零的根,從而可探究出函數(shù)和導數(shù)隨自變量的變化情況.
(2)求出,通過導數(shù)求出的單調性,結合零點存在定理得出存在,使得,即,從而得出的單調性,進而求出的解析式,再利用的單調性,從而可求其值域.
(1)解:,令,當時,恒成立,此時單調遞增;
當時,解得,,則隨的變化如下表,
|
|
|
|
|
|
|
|
|
|
|
則在上遞減,在上遞增.
綜上所述,當時,在上單調遞增;當時,在上單調遞減,在上單調遞增.
(2)因為,,則,
則 ,設,
則,則在上單調遞增.
對于,因為,,因此存在,
使得,即,故
當時,,,單調遞減;
當時,,,單調遞增.則
即,則,由,
可知,單調遞增.由得,.
所以的值域為.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若,求的極坐標方程;
(2)若與恰有4個公共點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F分別為B1C1,C1D1的中點,點P是上底面A1B1C1D1內一點,且AP∥平面EFDB,則cos∠APA1的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是邊長為2的正方形.平面,且.
(1)求證:平面平面.
(2)線段上是否存在一點,使三棱錐的高若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學界的震動,在1859年,德國數(shù)學家黎曼向科學院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結論(素數(shù)即質數(shù),).根據(jù)歐拉得出的結論,如下流程圖中若輸入的值為,則輸出的值應屬于區(qū)間( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,過點的直線與交于不同的兩點,且滿足,以為中點的線段的兩端點分別為,其中在軸上,在上,則_______,的最小值為____________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由四棱柱截去三棱錐后得到的幾何體如圖所示,四邊形是邊長為的正方形,為與的交點,為的中點,平面.
(Ⅰ)證明:平面;
(Ⅱ)若直線與平面所成的角為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準備對現(xiàn)有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心點O后轉向東北方向(即).現(xiàn)準備修建一條城市高架道路L,L在MO上設一出入口A,在ON上設一出入口B.假設高架道路L在AB部分為直線段,且要求市中心O與AB的距離為10km.
(1)求兩站點A,B之間距離的最小值;
(2)公路MO段上距離市中心O30km處有一古建筑群C,為保護古建筑群,設立一個以C為圓心,5km為半徑的圓形保護區(qū).則如何在古建筑群C和市中心O之間設計出入口A,才能使高架道路L及其延伸段不經過保護區(qū)(不包括臨界狀態(tài))?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)對a∈(0,1),是否存在實數(shù)λ,,使成立,若存在,求λ的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com