【題目】在四棱錐中,為梯形,

(1)在線段上,滿足平面,,求的值

(2)已知的交點為,若,且平面平面,求二面角平面角的正切值

【答案】1,(2

【解析】

1)首先延長,交于點,連接,根據(jù)線面平行的性質(zhì)得到,又因為的中點,所以的中點,即可得到的值.

2)在直角梯形中證得,根據(jù)勾股定理證得,即證平面,再過,連接,為二面角的平面角,求其正切值即可.

1

延長,交于點,連接.

因為,,,

所以,即的中點.

因為平面,平面平面

所以.

又因為的中點,所以的中點.

,.

2

因為

所以在中,.

中,.

又因為,,

所以.

因為,

所以,.

中,

所以.

中,,,

,即.

因為平面平面,

所以平面.

,連接.

因為平面,平面,所以.

平面.

平面,所以.

所以為二面角的平面角.

中,

所以,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,底面為菱形, , , 相交于點,四邊形為直角梯形, , , ,平面底面.

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個長方形木塊,三個側(cè)面積分別為81224,現(xiàn)將其削成一個正四面體模型,則該正四面體模型棱長的最大值為(

A.2B.C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)若當(dāng)時,總有,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上遞減,在上遞增,求實數(shù)的值.

2)若函數(shù)在定義域上不單調(diào),求實數(shù)的取值范圍.

3)若方程有兩個不等實數(shù)根,求實數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線與拋物線交于為拋物線上一點.

(1),求

(2)已知點,過點作直線分別交曲線,證明:在點運動過程中,直線始終過定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】誠信是立身之本,道德之基,我校學(xué)生會創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進(jìn)誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:

第一周

第二周

第三周

第四周

第一周期

第二周期

第三周期

(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù)

(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計算恰有兩周是“高誠信度”的概率;

(Ⅲ)已知學(xué)生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓:的離心率為,y軸于橢圓相交于A、B兩點,,CD是橢圓上異于A、B的任意兩點,且直線ACBD相交于點M,直線AD、BC相交于點N

求橢圓的方程;

求直線MN的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A. ,“”是“”的必要不充分條件

B. 為真命題”是“為真命題” 的必要不充分條件

C. 命題“,使得”的否定是:“

D. 命題:“”,則是真命題

查看答案和解析>>

同步練習(xí)冊答案