已知三棱錐中,底面為邊長(zhǎng)等于2的等邊三角形,垂直于底面,D為的中點(diǎn),那么直線BD與直線SC所成角的大小為  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知正三棱錐ABC,點(diǎn)P,A,B,C都在半徑為的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在長(zhǎng)方形ABCD中,AB=2,BC=1,E為DC的中點(diǎn),F(xiàn)為線段EC(端點(diǎn)除外)上一動(dòng)點(diǎn),現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD內(nèi)過(guò)點(diǎn)D作DK⊥AB,K為垂足,設(shè)AK=t,則t的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(文科做)(本題滿分14分)如圖,在長(zhǎng)方體
ABCDA1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(1)證明:D1EA1D;
(2)當(dāng)EAB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;
(3)AE等于何值時(shí),二面角D1ECD的大小為.                      

(理科做)(本題滿分14分)
如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,
CA =,AA1 =,M為側(cè)棱CC1上一點(diǎn),AMBA1
(Ⅰ)求證:AM⊥平面A1BC;
(Ⅱ)求二面角BAMC的大。
(Ⅲ)求點(diǎn)C到平面ABM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在四棱錐P—ABCD中,側(cè)面PAD、側(cè)面PCD與底成ABCD都垂直,底面是邊長(zhǎng)為3的正方形,PD=4,則四棱錐P—ABCD的全面積為                  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在下列四個(gè)正方體中,能得出AB⊥CD的序號(hào)是   ▲ 
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下列命題正確的有    
①若直線與平面有兩個(gè)公共點(diǎn),則直線在平面內(nèi);
②若直線上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),則∥α;
③若直線與平面α相交,則與平面α內(nèi)的任意直線都是異面直線;
④如果兩條異面直線中的一條與一個(gè)平面平行,則另一條直線一定與該平面相交;
⑤若直線與平面α平行,則與平面α內(nèi)的直線平行或異面;
⑥若平面α∥平面β,直線aα,直線bβ,則直線a∥b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知兩條不同直線、,兩個(gè)不同平面、,給出下列命題:
①若垂直于內(nèi)的兩條相交直線,則
②若//,則平行于內(nèi)的所有直線;
③若,,則;
④若,則
⑤若,//,則//
其中正確命題的序號(hào)是     .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

.如圖,在三棱錐A—BCD中,已知側(cè)面ABD底面BCD,若,則側(cè)棱AB與底面BCD所 成的角為            .

查看答案和解析>>

同步練習(xí)冊(cè)答案