【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,,且a4+a5=6a3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{log2an}的前n項(xiàng)和為Sn,求Sn的最小值.
【答案】(Ⅰ)an=2n-4(Ⅱ)-6
【解析】
(Ⅰ)各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比設(shè)為q,q>0,由等比數(shù)列的通項(xiàng)公式,解方程即可得到所求首項(xiàng)和公比,進(jìn)而得到所求通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an=log22n-4=n-4,求得數(shù)列{bn}的項(xiàng)的正負(fù),即可得到所求最小值.
解:(Ⅰ)各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比設(shè)為q,q>0,
,且a4+a5=6a3,
可得a1q=,a1q3+a1q4=6a1q2,
解得q=2,a1=,
則an=a1qn-1=2n-1=2n-4;
(Ⅱ)設(shè)bn=log2an=log22n-4=n-4,
由1≤n≤4時(shí),bn≤0,n≥5時(shí),bn>0,
可得Sn的最小值為S3=S4=-3-2-1=-6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù),有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面是矩形,平面,是的中點(diǎn),,.
(1)求異面直線AE與CD所成角的大;
(2)求二面角E-AD-B大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若是函數(shù)的極值點(diǎn),求函數(shù)在上的最大值;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有個(gè)交點(diǎn)?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為保障食品安全,某地食品藥監(jiān)管部門對(duì)轄區(qū)內(nèi)甲、乙兩家食品企業(yè)進(jìn)行檢查,分別從這兩家企業(yè)生產(chǎn)的某種同類產(chǎn)品中隨機(jī)抽取了100件作為樣本,并以樣本的一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)值為檢測(cè)依據(jù).已知該質(zhì)量指標(biāo)值對(duì)應(yīng)的產(chǎn)品等級(jí)如下:
質(zhì)量指標(biāo)值 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45] |
等級(jí) | 次品 | 二等品 | 一等品 | 二等品 | 三等品 | 次品 |
根據(jù)質(zhì)量指標(biāo)值的分組,統(tǒng)計(jì)得到了甲企業(yè)的樣本頻率分布直方圖和乙企業(yè)的樣本頻數(shù)分布表(如下面表,其中a>0).
質(zhì)量指標(biāo)值 | 頻數(shù) |
[15,20) | 2 |
[20,25) | 18 |
[25,30) | 48 |
[30,35) | 14 |
[35,40) | 16 |
[40,45] | 2 |
合計(jì) | 100 |
(Ⅰ)現(xiàn)從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,試估計(jì)該件產(chǎn)品為次品的概率;
(Ⅱ)為守法經(jīng)營(yíng)、提高利潤(rùn),乙企業(yè)開展次品生產(chǎn)原因調(diào)查活動(dòng).已知乙企業(yè)從樣本里的次品中隨機(jī)抽取了兩件進(jìn)行分析,求這兩件次品中恰有一件指標(biāo)值屬于[40,45]的產(chǎn)品的概率;
(Ⅲ)根據(jù)圖表數(shù)據(jù),請(qǐng)自定標(biāo)準(zhǔn),對(duì)甲、乙兩企業(yè)食品質(zhì)量的優(yōu)劣情況進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò),.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)四邊形的四個(gè)頂點(diǎn)都在橢圓上,且對(duì)角線,過(guò)原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期.一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)100名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計(jì) | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計(jì) | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若曲線在直線的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com