(本小題滿分10分)
已知
(1) 求的定義域;
(2) 判斷的奇偶性;
(3)求使得的取值范圍.
解:(1)的定義域為;(2) 為奇函數(shù); 
(3)當時,;當時,。
本試題主要是考查了函數(shù)定義域和函數(shù)的奇偶性的運用,以及函數(shù)與不等式的求解的綜合運用。
(1)因為函數(shù)的定義域就是使得原式有意義的自變量的取值范圍。
(2)而函數(shù)的奇偶性的判定先看定義域是否關(guān)于原點對稱,然后判定f(x)與f(-x的關(guān)系得到結(jié)論。
(3)由于底數(shù)不定需要對a分情況討論,得到不等式的解集。
解:(1)要使函數(shù)有意義,則,即,得
所以的定義域為          ………3分
(2) 函數(shù)的定義域關(guān)于原點對稱, 又,
所以, 所以為奇函數(shù).    ………6分
(3)當時,;      ………8分
時,   ………10分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義在區(qū)間上的函數(shù)為奇函數(shù),且
(1)求函數(shù)的解析式;
(2)用定義法證明:函數(shù)在區(qū)間上是增函數(shù);
(3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知定義域為R的函數(shù)為奇函數(shù)。且滿足,當時,,則=       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù) 
(Ⅰ)當時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若,若分別為的極大值和極小值,若,求取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),.
(1)若且函數(shù)的值域為,求的表達式;
(2)在(1)的條件下,當時,是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)設(shè)為偶函數(shù),判斷能否大于零?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的定義域為,部分對應(yīng)值如下表.的導函數(shù),函數(shù)的圖像如圖所示:若兩正數(shù)滿足,則的取值范圍是(    )
 








 

A.      B.      C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義新運算“”:當a≥b時,ab=a;當a<b時,ab=b2,則函數(shù)f(x)=(1x)x-(2x),x∈[-2,2]的最大值等于(   )
A.-1B.1C.6D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的函數(shù)滿足,當x∈(0,1]時,,設(shè)  ,則a,b,c大小關(guān)系是(   )
A.a(chǎn)>b>cB.a(chǎn)>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知, 則(    )
A.0B.2C.4D.7

查看答案和解析>>

同步練習冊答案