【題目】已知函數(shù)f(x)=lnx+x2﹣ax,a∈R
(1)若f(x)在P(x0 , y0)(x∈[ ))處的切線方程為y=﹣2,求實(shí)數(shù)a的值;
(2)若x1 , x2(x1<x2)是函數(shù)f(x)的兩個(gè)零點(diǎn),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),證明:f′( )<0.
【答案】
(1)解:依題意有l(wèi)nx0+ ﹣ax0=﹣2, +2x0﹣a=0,
消去a得lnx0﹣ +1=0,x0∈[ ,+∞),
h(t)=lnt﹣t2+1,t∈[ ,+∞),
顯然h(1)=0,且h′(t)= ﹣2t= ≤0,
故lnx0﹣ +1=0當(dāng)且僅當(dāng)x0=1,
所以a= +2x0=3
(2)解:x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn)有f(x1)=lnx1+ ﹣ax1=0,
f(x2)=lnx2+ ﹣ax2=0,相減得a= +x1+x2,
∵f′( )= ﹣
所以要證明f′( )<0,只需證明 ﹣ <0,(0<x1<x2),
即證明 >lnx1﹣lnx2,即證明 >ln (*)
令 =t∈(0,1),則g(x)=(1+t)lnt﹣2t+2,
則g′(t)=lnt+ ﹣1,g″(t)= ﹣ <0,
∴g′(t)在(0,1)遞減,g′(t)>g′(1)=2>0,
∴g(t)在(0,1)遞增,g(t)<g(1)=0,
所以(*)成立,即f′( )<0
【解析】(1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為h(t)=lnt﹣t2+1,t∈[ ,+∞),根據(jù)函數(shù)的單調(diào)性求出a的值即可;(2)求出a= +x1+x2 , 問題轉(zhuǎn)化為證明 >ln (*),令 =t∈(0,1),則g(x)=(1+t)lnt﹣2t+2,根據(jù)函數(shù)的單調(diào)性證明即可.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南宋數(shù)學(xué)家秦九韶早在《數(shù)書九章》中就獨(dú)立創(chuàng)造了已知三角形三邊求其面積的公式:“以小斜冪并大斜冪,減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減之,以四約之,為實(shí),一為從隅,開方得積.”(即:S= ,a>b>c),并舉例“問沙田一段,有三斜(邊),其小斜一十三里,中斜一十四里,大斜一十五里,欲知為田幾何?”則該三角形田面積為
A. 82平方里 B. 84平方里
C. 85平方里 D. 83平方里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E: +y2=1(a>1)的右焦點(diǎn)為F,右頂點(diǎn)為A,已知 ,其中O為原點(diǎn),e為橢圓的離心率.
(Ⅰ)求a的值;
(Ⅱ)動(dòng)直線l過點(diǎn)N(﹣2,0),l與橢圓E交于P,Q兩點(diǎn),求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某廠生產(chǎn)某種產(chǎn)品的過程中記錄的幾組數(shù)據(jù),其中表示產(chǎn)量(單位:噸),表示生產(chǎn)中消耗的煤的數(shù)量(單位:噸).
(1)試在給出的坐標(biāo)系下作出散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷,在與中,哪一個(gè)方程更適合作為變量關(guān)于的回歸方程模型?(給出判斷即可,不需要說明理由)
(2)根據(jù)(1)的結(jié)果以及表中數(shù)據(jù),建立變量關(guān)于的回歸方程.并估計(jì)生產(chǎn)噸產(chǎn)品需要準(zhǔn)備多少噸煤.參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點(diǎn),F(xiàn)是CE的中點(diǎn).
(1)證明:BF∥平面ACD;
(2)求平面BCE與平面ACD所成銳二面角的大小;
(3)求點(diǎn)G到平面BCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一商場(chǎng)對(duì)每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計(jì)對(duì)比,得到如下表格:
其中=1,2,3,4,5,6,7.
(1)以每天進(jìn)店人數(shù)為橫軸,每天商品銷售件數(shù)為縱軸,畫出散點(diǎn)圖;
(2)求線性回歸方程;(結(jié)果保留到小數(shù)點(diǎn)后兩位)
(參考數(shù)據(jù):=3 245, =25, =15.43, =5 075)
(3)預(yù)測(cè)進(jìn)店人數(shù)為80人時(shí),商品銷售的件數(shù).(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0)的導(dǎo)函數(shù)y=f′(x)的兩個(gè)零點(diǎn)為0和3.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的極大值為 ,求函數(shù)f(x)在區(qū)間[0,5]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在班級(jí)活動(dòng)中,4名男生和3名女生站成一排表演節(jié)目:(寫出必要的數(shù)學(xué)式,結(jié)果用數(shù)字作答)
(1)三名女生不能相鄰,有多少種不同的站法?
(2)四名男生相鄰有多少種不同的排法?
(3)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?
(4)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學(xué)身高互不相等)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com