函數(shù)的值域是(     )
A.B.C.D.
B

試題分析:因為函數(shù),開口向上,對稱軸x=1,那么在,函數(shù)先遞減在遞增,可知函數(shù)的最小值為頂點的函數(shù)值-1,最大值在x=-1,x=3處取得,即為3,那么函數(shù)的值域為,選B.
點評:解決的關(guān)鍵是根據(jù)二次函數(shù)的性質(zhì)求解值域,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1) 試判斷函數(shù)上單調(diào)性并證明你的結(jié)論;
(2) 若恒成立, 求整數(shù)的最大值;
(3) 求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=若f(2-a2)>f(a),則實數(shù)a的取值范圍是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=k·.
(I)求函數(shù)F(x)= f(x)- g(x)的單調(diào)區(qū)間;
(Ⅱ)當x>1時,函數(shù)f(x)> g(x)恒成立,求實數(shù)k的取值范圍;
(Ⅲ)設(shè)正實數(shù)a1,a2,a3,,an滿足a1+a2+a3++an=1,
求證:ln(1+)+ln(1+)++ln(1+)>

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,,則,,從小到大的順序為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)為常數(shù),函數(shù),若上是增函數(shù),則的取值范圍是___________.

查看答案和解析>>

同步練習冊答案