如圖,直線y=-
34
x+6
與x軸、y軸交于A、B兩點,M是直線AB上的一個動點,MC⊥x軸于C,MD⊥y軸于D,若點M的橫坐標(biāo)為a.
(1)當(dāng)點M在線段AB上運動時,用a的代數(shù)式表示四邊形OCMD的周長;
(2)在(1)的條件下,求四邊形OCMD面積的最大值;
(3)以M為圓心MD為半徑的⊙M與以A為圓心AC為半徑的⊙A相切時,求a的值.
分析:(1)由MC⊥x軸于C,MD⊥y軸于D,易得四邊形OCMD是矩形,又由點M的橫坐標(biāo)為a,M是直線AB上的一個動點,即可求得MC的值,則可求得四邊形OCMD的周長;
(2)由MD=a,MC=-
3
4
a+6,即可得四邊形OCMD面積為:-
3
4
(a-4)2+12,則可求得四邊形OCMD面積的最大值;
(3)由以M為圓心MD為半徑的⊙M與以A為圓心AC為半徑的⊙A相切,可得AM=MD+AC,則可得AC=8-a,AM=8,又由勾股定理,即可得方程:82=(8-a)2+(-
3
4
a+6)2,解此方程即可求得答案.
解答:解:(1)∵M(jìn)C⊥x軸,MD⊥y軸,
∴四邊形OCMD是矩形,
∵點M的橫坐標(biāo)為a,M是直線AB上的一個動點,
∴y=-
3
4
a+6,
∴MD=OC=a,MC=OD=-
3
4
a+6,
∴四邊形OCMD的周長為:MD+OC+MC+OD=2[a+(-
3
4
a+6)]=
1
2
a+12;

(2)∵S四邊形OCMD=MD•MC=a×(-
3
4
a+6)=-
3
4
a2+6a=-
3
4
(a2-8a)=-
3
4
(a-4)2+12,
∴當(dāng)a=4時,S四邊形OCMD最大,最大值為12,
即四邊形OCMD面積的最大值為12;

(3)∵以M為圓心MD為半徑的⊙M與以A為圓心AC為半徑的⊙A相切,
∴AM=MD+AC,
∵直線y=-
3
4
x+6交x軸于點A,
∴點A的坐標(biāo)為:(8,0),
∴OA=8,
∵M(jìn)D=OC=a,
∴AC=8-a,
∴AM=a+8-a=8,
在Rt△ACM中,AM2=AC2+MC2,
即82=(8-a)2+(-
3
4
a+6)2,
∴25a2-400a+576=0,
∴(5a-72)(5a-8)=0,
解得:a=
72
5
>8(舍去),a=
8
5
,
∴a的值為:
8
5
點評:此題考查了矩形的性質(zhì)、點與一次函數(shù)的關(guān)系、二次函數(shù)的最值問題、圓與圓的位置關(guān)系以及勾股定理等知識.此題難度較大,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1:y=x+1與直線l2:y=-x-
1
2
把平面直角坐標(biāo)系分成四個部分,則點(-
3
4
,
1
2
)在( 。
A、第一部分B、第二部分
C、第三部分D、第四部分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,直線AB、CD交于O點,OE為∠AOC的平分線,∠1=17°,則∠2=
34°
,∠3=
146°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•江漢區(qū)模擬)已知:拋物線F1:y=x2+mx+n的頂點為A(1,0)
(1)求F1的函數(shù)解析式;
(2)如圖,直線y=
1
2
x+b
交x軸于點C,交y軸于點D,在拋物線F1上有一點B,且點B與點A關(guān)于直線y=
1
2
x+b
對稱,若拋物線F2的頂點為點B,且經(jīng)過點A,試求拋物線F2的函數(shù)解析式;
(3)將(2)中求得的拋物線F2向左平移n個單位得拋物線F3,拋物線F3的頂點為點P,是否存在n使得tan∠BAP=
3
4
?若存在試求n的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•無錫二模)如圖,直線L1∥L2,AB⊥CD,∠1=34°,那么∠2的度數(shù)是
56
56
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州模擬)如圖,直線a∥b,則∠A的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案