【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論(1)4a+2b+c>0;(2)方程ax2+bx+c=0兩根之和小于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個數(shù)是( )
A. 4 個B. 3個C. 2個D. 1個
【答案】D
【解析】
根據(jù)函數(shù)的圖象可知x=2時,函數(shù)值的正負性,即可對(1)作出判斷;根據(jù)函數(shù)圖象的開口方向得出a的符號,根據(jù)對稱軸在y軸右側(cè)可得出b的符號,根據(jù)圖象與y軸的交點可得出c的符號,根據(jù)一元二次方程根與系數(shù)的關(guān)系即可對(2)作出判斷;二次函數(shù)的增減性需要找到其對稱軸才知具體情況,故(3)錯誤;根據(jù)b、c的符號即可得出一次函數(shù)y=x+bc所經(jīng)過的象限進而對(4)作出判斷.
解:∵當(dāng)x=2時,y=4a+2b+c,由圖象可知當(dāng)x=2時對應(yīng)的點在x軸的上方,即4a+2b+c>0;故(1)正確;
由二次函數(shù)y=ax2+bx+c(a≠0)的圖象可知:圖象開口向上,a>0,對稱軸在y軸右側(cè),>0,所以b<0,圖象與y軸交在負半軸,c<0,所以一元二次方程ax2+bx+c =0的兩根之和為>0,故(2)錯誤;
因為函數(shù)的增減性需要找到其對稱軸才知具體情況,不能在整個自變量取值范圍內(nèi)說y隨x的增大而增大,故(3)錯誤;
因為c<0,b<0,
所以bc>0,
所以一次函數(shù)y=x+bc的圖象一定經(jīng)過第二象限,故(4)錯誤.
所以正確的個數(shù)是1個.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.
(1)求坡底C點到大樓距離AC的值;
(2)求斜坡CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作DF⊥AC于點F.
(1)若⊙O的半徑為3,∠CDF=15°,求陰影部分的面積;
(2)求證:DF是⊙O的切線;
(3)求證:∠EDF=∠DAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).
(1)如圖,當(dāng)∠APB=45°時,求AB及PD的長;
(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+2與x軸的交點是A(3,0)、B(6,0),與y軸的交點是C.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動點,過點P作PQ∥y軸交直線BC于點Q.
①當(dāng)x取何值時,線段PQ的長度取得最大值,其最大值是多少?
②是否存在這樣的點P,使△OAQ為直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,等腰直角三角形的腰在上,,將繞點逆時針旋轉(zhuǎn),點的對應(yīng)點恰好落在上,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜生產(chǎn)基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y (℃)與時間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.
請根據(jù)圖中信息解答下列問題:
(1)求這天的溫度y與時間x(0≤x≤24)的函數(shù)關(guān)系式;
(2)求恒溫系統(tǒng)設(shè)定的恒定溫度;
(3)若大棚內(nèi)的溫度低于10℃時,蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時,才能使蔬菜避免受到傷害?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com