【題目】如圖 1,二次函數(shù)的圖像過點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P 從 A 出發(fā),在線段 AB 上沿 A → B 的方向以每秒 2 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)P作 PD⊥y 于點(diǎn) D ,交拋物線于點(diǎn) C .設(shè)運(yùn)動(dòng)時(shí)間為 t (秒).
(1)求二次函數(shù)的表達(dá)式;
(2)連接 BC ,當(dāng)t=時(shí),求△BCP的面積;
(3)如圖 2,動(dòng)點(diǎn) P 從 A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線段 OA 上沿 O→A 的方向以 1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P 與 B 重合時(shí),P 、 Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ 、 PQ ,將△DPQ沿直線 PC 折疊到 △DPE .在運(yùn)動(dòng)過程中,設(shè) △DPE 和 △OAB重合部分的面積為 S ,直接寫出 S 與 t 的函數(shù)關(guān)系式及 t 的取值范圍.
【答案】(1);(2)4;(3).
【解析】
試題分析:(1)直接將A、B兩點(diǎn)的坐標(biāo)代入列方程組解出即可;
(2)如圖1,要想求△BCP的面積,必須求對(duì)應(yīng)的底和高,即PC和BD;先求OD,再求BD,PC是利用點(diǎn)P和點(diǎn)C的橫坐標(biāo)求出,要注意符號(hào);
(3)分兩種情況討論:①△DPE完全在△OAB中時(shí),即當(dāng)時(shí),如圖2所示,重合部分的面積為S就是△DPE的面積;②△DPE有一部分在△OAB中時(shí),當(dāng)時(shí),如圖4所示,△PDN就是重合部分的面積S.
試題解析:(1)把A(3,0),B(0,4)代入中得:
,解得:,∴解析式為:;
(2)如圖1,當(dāng)時(shí),AP=2t,∵PC∥x軸,∴,∴,∴OD===,當(dāng)y=時(shí),=,,解得:,,∴C(﹣1,),由,得,則PD=2,∴S△BCP=×PC×BD==4;
(3)分兩種情況討論:①如圖3,當(dāng)點(diǎn)E在AB上時(shí),由(2)得OD=QM=ME=,∴EQ=,由折疊得:EQ⊥PD,則EQ∥y軸,∴,∴,∴t=,同理得:PD=,∴當(dāng)時(shí),S=S△PDQ=×PD×MQ=,;
②當(dāng)時(shí),如圖4,P′D′=,點(diǎn)Q與點(diǎn)E關(guān)于直線P′C′對(duì)稱,則Q(t,0)、E(t,),∵AB的解析式為:,D′E的解析式為:,則交點(diǎn)N(,),∴S=S△P′D′N=×P′D′×FN=,∴.
綜上所述:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店新開張,第一天銷售服裝a件,第二天比第一天少銷售14件,第三天的銷售量是第二天的2倍多10件,則這三天銷售了( )件.
A. 3a﹣42 B. 3a+42 C. 4a﹣32 D. 3a+32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(2,1),將點(diǎn)A繞原點(diǎn)O旋轉(zhuǎn)180°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是( )
A.(-1,-2)B.(1,-2)C.(-2,-1)D.(2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若三個(gè)連續(xù)正整數(shù)的和小于39,則這樣的正整數(shù)中,最大的一組數(shù)的和是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)P(3,1﹣a)與點(diǎn)Q(b+2,3)關(guān)于原點(diǎn)對(duì)稱,則a+b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與證明:(1)如圖1,直線m經(jīng)過正三角形ABC的頂點(diǎn)A,在直線m上取兩點(diǎn) D,E,使得∠ADB=60°,∠AEC=60°.通過觀察或測(cè)量,猜想線段BD,CE與DE之間滿足的數(shù)量關(guān)系,并予以證明;
(2)將(1)中的直線m繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)一個(gè)角度到如圖2的位置,并使∠ADB=120°,∠AEC=120°.通過觀察或測(cè)量,請(qǐng)直接寫出線段BD,CE與DE之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為BC中點(diǎn),CE⊥AD于E,BF∥AC交CE的延長(zhǎng)線于F.
(1)求證:△ACD≌△CBF;
(2)求證:AB垂直平分DF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com