【題目】在RtABC中,ACB=90°,AC=BC,D為BC中點(diǎn),CEAD于E,BFAC交CE的延長(zhǎng)線于F.

(1)求證:ACD≌△CBF;

(2)求證:AB垂直平分DF.

【答案】見(jiàn)解析

【解析】

試題分析:(1)根據(jù)ACB=90°,求證CAD=BCF,再利用BFAC,求證ACB=CBF=90°,然后利用ASA即可證明ACD≌△CBF

(2)先根據(jù)ASA判定ACD≌△CBF得到BF=BD,再根據(jù)角度之間的數(shù)量關(guān)系求出ABC=ABF,即BA是FBD的平分線,從而利用等腰三角形三線合一的性質(zhì)求證即可.

解:(1)在RtABC中,ACB=90°,AC=BC,

∴∠CAB=CBA=45°

CEAD,

∴∠CAD=BCF,

BFAC,

∴∠FBA=CAB=45°

∴∠ACB=CBF=90°

ACDCBF中,

∴△ACD≌△CBF;

(2)證明:∵∠BCE+ACE=90°,ACE+CAE=90°,

∴∠BCE=CAE

ACBC,BFAC

BFBC

∴∠ACD=CBF=90°

ACDCBF中,

,

∴△ACD≌△CBF,

CD=BF

CD=BD=BC,

BF=BD

∴△BFD為等腰直角三角形.

∵∠ACB=90°,CA=CB,

∴∠ABC=45°

∵∠FBD=90°,

∴∠ABF=45°

∴∠ABC=ABF,即BA是FBD的平分線.

BA是FD邊上的高線,BA又是邊FD的中線,

即AB垂直平分DF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線l∥BC

(1)判斷直線l與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;

(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,二次函數(shù)的圖像過(guò)點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P A 出發(fā),在線段 AB 上沿 A B 的方向以每秒 2 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P PDy 于點(diǎn) D ,交拋物線于點(diǎn) C 設(shè)運(yùn)動(dòng)時(shí)間為 t (秒)

1)求二次函數(shù)的表達(dá)式;

(2)連接 BC ,當(dāng)t時(shí),求BCP的面積;

(3)如圖 2,動(dòng)點(diǎn) P A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線段 OA 上沿 OA 的方向以 1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P B 重合時(shí),P Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ 、 PQ ,將DPQ沿直線 PC 折疊到 DPE 在運(yùn)動(dòng)過(guò)程中,設(shè) DPE OAB重合部分的面積為 S ,直接寫(xiě)出 S t 的函數(shù)關(guān)系式及 t 的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠A=40°,則∠A的補(bǔ)角等于(  )
A.50°
B.90°
C.140°
D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為提倡節(jié)約用水,采取分段收費(fèi),若用戶每月用水不超過(guò)20立方米,每立方米收費(fèi)2元;若用水超過(guò)20立方米,超過(guò)部分每立方米加收1元.小明家5月份交水費(fèi)64元,則他家該月用水量為(

A. 34立方米 B. 32立方米 C. 30立方米 D. 28立方米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列命題:

1)如果a<0,b>0,那么ab<0;

2)如果兩個(gè)三角形的3個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形全等;

3)同角的補(bǔ)角相等;

4)直角都相等.

其中真命題的個(gè)數(shù)是( ).

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動(dòng)點(diǎn),點(diǎn)F是射線CD上一點(diǎn),射線ED和射線AF交于點(diǎn)G,且∠AGE=∠DAB

(1)求線段CD的長(zhǎng);

(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長(zhǎng);

(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( 。
A.7a+a=7a2
B.5y﹣3y=2
C.3x2y﹣2yx2=x2y
D.3a+2b=5ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一元二次方程x2-2x-m=0無(wú)實(shí)數(shù)根,則一次函數(shù)y=(m+1)x+m-1的圖象不經(jīng)過(guò)第(  )象限.

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案