【題目】如圖,正方形中,點、分別是邊、的中點,連接、交于點,則下列結論錯誤的是( )
A. B. C. D.
【答案】D
【解析】分析:證明△ABP≌△DAF可判斷AP與DF的位置關系與數(shù)量關系;延長AP與DC的延長線交于點G,用EC是斜邊DG上的中線證明;過點C作CH⊥EG于點H,可證PH=EF,則EP=EF=EH,比較EH與EC的關系.
詳解:A.易證△ABP≌△DAF(SAS)得,AP=DF;
B.由△ABP≌△DAF(SAS)得,∠BAP=∠ADF,
因為∠ADF+∠AFD=90°,所以∠BAP+∠AFD=90°,所以∠AEF=90°,
所以AP⊥DF;
C.延長AP與DC的延長線交于點G,
易證△ABP≌△GCP(ASA),所以CG=AB,
又AB=CD,所以CG=CD,
因為∠DEG=90°,所以CE=CD;
D.過點C作CH⊥EG于點H,
易證△AEF≌△CHP(ASA),所以EF=HP,
所以EP+EF=EP+PH=EH<EC,即EP+EF<CD.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】某市為鼓勵市民節(jié)約用氣,對居民管道天然氣實行兩檔階梯式收費.年用天然氣量310立方米及以下為第一檔;年用天然氣量超出310立方米為第二檔.某戶應交天然氣費y(元)與年用天然氣量x(立方米)的關系如圖所示,觀察圖像并回答下列問題:
(1)年用天然氣量不超過310立方米時,求y關于x的函數(shù)解析式(不寫定義域);
(2)小明家2017年天然氣費為1029元,求小明家2017年使用天然氣量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,分別為,上的點,,交于點,交于點,為的中點,交于點,連接.下列結論:①;②;③;④.其中正確的結論有( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,邊長為2的正方形中,是對角線上的一個動點(與點、不重合),過點作,交射線于點,過點作,垂足為點.
(1)求證::
(2)在點的運動過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值,寫出解答過程:若變化,試說明理由:
(3)在點的運動過程中,能否為等腰三角形?如果能,直接寫出此時的長;如果不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F是對角線BD上兩點,DE=BF.
(1)判斷四邊形AECF是什么特殊四邊形,并證明;
(2)若EF=4,DE=BF=2,求四邊形AECF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D在邊BC所在的直線上,過點D作DF∥AC交直線AB于點F,DE∥AB交直線AC于點E.
(1)當點D在邊BC上時,如圖①,求證:DE+DF=AC.
(2)當點D在邊BC的延長線上時,如圖②;當點D在邊BC的反向延長線上時,如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關系,不需要證明.
(3)若AC=6,DE=4,則DF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東66.1°方向,距離燈塔120海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,求BP和BA的長(結果取整數(shù)).
參考數(shù)據(jù):sin66.1°≈0.91,cos66.1°≈0.41,tan64°≈2.26,取1.414.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關于PQ對稱,其中第一個△A1B1C1的頂點A1與點P重合,第二個△A2B2C2的頂點A2是B1C1與PQ的交點……最后一個△AnBnCn的頂點Bn,Cn在圓上.
(1)如圖②,當n=1時,求正三角形的邊長a1.
(2)如圖③,當n=2時,求正三角形的邊長a2.
(3)如圖①,求正三角形的邊長an(用含n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com