【題目】某日,深圳高級(jí)中學(xué)(集團(tuán))南北校區(qū)初三學(xué)生參加?xùn)|校區(qū)下午時(shí)的交流活動(dòng),南校區(qū)學(xué)生中午乘坐校車出發(fā),沿正北方向行12公里到達(dá)北校區(qū),然后南北校區(qū)一同前往東校區(qū)(等待時(shí)間不計(jì)).如圖所示,已知東校區(qū)在南校區(qū)北偏東方向,在北校區(qū)北偏東方向.校車行駛狀態(tài)的平均速度為,途中一共經(jīng)過(guò)30個(gè)紅綠燈,平均每個(gè)紅綠燈等待時(shí)間為30秒.

1)求北校區(qū)到東校區(qū)的距離;

2)通過(guò)計(jì)算,說(shuō)明南北校區(qū)學(xué)生能否在前到達(dá)東校區(qū).(本題參考數(shù)據(jù):

【答案】1;(2)能.

【解析】

1)過(guò)點(diǎn)于點(diǎn),然后在兩個(gè)直角三角形中通過(guò)三角函數(shù)分別計(jì)算出AE、AC即可;

2)算出總路程求出汽車行駛的時(shí)間,加上等紅綠燈的時(shí)間即為總時(shí)間,即可作出判斷.

解:(1)過(guò)點(diǎn)于點(diǎn).

依題意有:,,

,

2)總用時(shí)為:分鐘分鐘,

能規(guī)定時(shí)間前到達(dá).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6,BC3動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)P(不與點(diǎn)AC重合)作EFAC,交ABBC于點(diǎn)E,交ADDC于點(diǎn)F,以EF為邊向右作正方形EFGH設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)①AC   .②當(dāng)點(diǎn)FAD上時(shí),用含t的代數(shù)式直接表示線段PF的長(zhǎng)   

2)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求t的值.

3)設(shè)方形EFGH的周長(zhǎng)為l,求lt之間的函數(shù)關(guān)系式.

4)直接寫出對(duì)角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為12時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于AB(6,n)兩點(diǎn).

(1)求kn的值;

(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時(shí),函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150/千克,售價(jià)為400元千克.因市場(chǎng)變化,準(zhǔn)備低價(jià)一次性處理掉部分存貨,所得貨款全部用來(lái)生產(chǎn)產(chǎn)品,產(chǎn)品售價(jià)為200/千克.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價(jià)格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).

(千克)

(元/千克)

200

350

400

300

1)請(qǐng)求出處理價(jià)格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;

2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時(shí),生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?

3)由于改進(jìn)技術(shù),產(chǎn)品的生產(chǎn)成本降低到了/千克,設(shè)全部產(chǎn)品全部售出,所得總利潤(rùn)為(元),若時(shí),滿足的增大而減小,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn),與軸相交于點(diǎn).

1)填空:的值為 ,的值為 ;

2)以為邊作菱形,使點(diǎn)軸正半軸上,點(diǎn)在第一象限,求點(diǎn)的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直角三角板∠ABO30°,直角項(xiàng)點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)的y1圖象上,頂點(diǎn)B在函數(shù)y2的圖象上,則=( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=16,OAB中點(diǎn),點(diǎn)C在線段OB(不與點(diǎn)O,B重合),OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn) 270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點(diǎn)P,Q,且點(diǎn)P,QAB異側(cè),連接OP.

1)求證:AP=BQ;

2)當(dāng)BQ= 時(shí),的長(zhǎng)(結(jié)果保留 )

3)若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,點(diǎn)兩點(diǎn),交軸于點(diǎn).

(1)的值.

(2)請(qǐng)根據(jù)圖象直接寫出不等式的解集.

(3)軸上是否存在一點(diǎn),使得以、、三點(diǎn)為頂點(diǎn)的三角形是為腰的等腰三角形,若存在,請(qǐng)直接寫出符合條件的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是直徑AB所對(duì)的半圓弧,點(diǎn)P與直徑AB所圍成圖形的外部的一個(gè)定點(diǎn),AB=8cm,點(diǎn)C上一動(dòng)點(diǎn),連接PCAB于點(diǎn)D

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段ADCD,PD,進(jìn)行了研究,設(shè)A,D兩點(diǎn)間的距離為x cmC,D兩點(diǎn)間的距離為cmPD兩點(diǎn)之間的距離為cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了,x的幾組對(duì)應(yīng)值:

x/cm

0.00

1.00

2.00

3.00

3.20

4.00

5.00

6.00

6.50

700

8.00

/cm

0.00

1.04

2.09

3.11

3.30

4.00

4.41

3.46

2.50

153

0.00

/cm

6.24

5.29

4.35

3.46

3.30

2.64

2.00

m

1.80

2.00

2.65

補(bǔ)充表格;(說(shuō)明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留兩位小數(shù))

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象:

3)結(jié)合函數(shù)圖象解決問(wèn)題:當(dāng)AD2PD 時(shí),AD的長(zhǎng)度約為___________

查看答案和解析>>

同步練習(xí)冊(cè)答案