【題目】對于一個(gè)三位正整數(shù)t將各數(shù)位上的數(shù)字重新排序后(包括本身),得到一個(gè)新的三位數(shù) ac),在所有重新排列的三位數(shù)中當(dāng)|a+c2b|最小時(shí),稱此時(shí)的 t最優(yōu)組合,并規(guī)定Ft=|ab||bc|,例如124重新排序后為142、214、因?yàn)?/span>|1+44|=1|1+28|=5,|2+42|=4所以124124最優(yōu)組合,此時(shí)F124=1

1)三位正整數(shù)t,有一個(gè)數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù)求證Ft=0;

2)一個(gè)正整數(shù)N個(gè)數(shù)字組成,若從左向右它的第一位數(shù)能被1整除,它的前兩位數(shù)能被2整除前三位數(shù)能被3整除,,一直到前N位數(shù)能被N整除我們稱這樣的數(shù)為善雅數(shù).例如123的第一位數(shù)1能披1整除,它的前兩位數(shù)12能被2整除前三位數(shù)123能被3整除,123是一個(gè)善雅數(shù).若三位善雅數(shù)m=200+10x+y0≤x≤9,0≤y≤9,xy為整數(shù)),m的各位數(shù)字之和為一個(gè)完全平方數(shù),求出所有符合條件的善雅數(shù)Fm)的最大值

【答案】(1)0;(2)0.

【解析】試題分析:(1)由三位正整數(shù)t中,有一個(gè)數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),根據(jù)最優(yōu)組合的定義即可求解;

2)由三位善雅數(shù)的定義,可得a為偶數(shù),且2+x+y3的倍數(shù),且2+x+y30,又由m的各位數(shù)字之和為一個(gè)完全平方數(shù),可得2+x+y=32=9,繼而求得答案.

試題解析:(1)證明:三位正整數(shù)t中,有一個(gè)數(shù)位上的數(shù)字是另外兩數(shù)位上的數(shù)字的平均數(shù),重新排序后:其中兩個(gè)數(shù)位上數(shù)字的和是一個(gè)數(shù)位上的數(shù)字的2倍,a+c﹣2b=0,即(abbc=0,Ft=0

2m=200+10x+y善雅數(shù),x為偶數(shù),且2+x+y3的倍數(shù),x10,y10,∴2+x+y30m的各位數(shù)字之和為一個(gè)完全平方數(shù),∴2+x+y=32=9,當(dāng)x=0時(shí),y=7,當(dāng)x=2時(shí),y=5,當(dāng)x=4時(shí),y=3,當(dāng)x=6時(shí),y=1,所有符合條件的善雅數(shù)有:207225,243261,所有符合條件的善雅數(shù)Fm)的最大值是=|2﹣3|﹣|3﹣4|=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖兩直線AB,CD相交于點(diǎn)O,OE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度數(shù)

(2)OFOE,COF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好治理西太湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:

經(jīng)調(diào)查:購買一臺(tái)A型設(shè)備比購買一臺(tái)B型設(shè)備多2萬元,購買2臺(tái)A型設(shè)備比購買4臺(tái)B型設(shè)備少4萬元.

1)求ab的值;

2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過47萬元,你認(rèn)為該公司有哪幾種購買方案;

3)在(2)問的條件下,若該月要求處理西太湖的污水量不低于1860噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD,FAB上一點(diǎn)HBC延長線上一點(diǎn),連接FH,將△FBH沿FH翻折,使點(diǎn)B的對應(yīng)點(diǎn)E落在AD,EHCD交于點(diǎn)G,連接BGFH于點(diǎn)M當(dāng)GB平分∠CGE時(shí),BM=,AE=8,S四邊形EFMG=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】父母恩深重恩憐無歇時(shí),每年5月的第二個(gè)星期日即為母親節(jié)節(jié)日前夕巴蜀中學(xué)學(xué)生會(huì)計(jì)劃采購一批鮮花禮盒贈(zèng)送給媽媽們

1)經(jīng)過和花店賣家議價(jià),可在原標(biāo)價(jià)的基礎(chǔ)上打八折購進(jìn)若在花店購買80個(gè)禮盒最多花費(fèi)7680,請求出每個(gè)禮盒在花店的最高標(biāo)價(jià)(用不等式解答)

2)后來學(xué)生會(huì)了解到通過大眾點(diǎn)評美團(tuán)同城配送會(huì)在(1)中花店最高售價(jià)的基礎(chǔ)上降價(jià)25%,學(xué)生會(huì)計(jì)劃在這兩個(gè)網(wǎng)站上分別購買相同數(shù)量的禮盒,但實(shí)際購買過程中,大眾點(diǎn)評網(wǎng)上的購買價(jià)格比原有價(jià)格上漲m%,購買數(shù)量和原計(jì)劃一樣美團(tuán)網(wǎng)上的購買價(jià)格比原有價(jià)格下降了m購買數(shù)量在原計(jì)劃基礎(chǔ)上增加15m%,最終,在兩個(gè)網(wǎng)站的實(shí)際消費(fèi)總額比原計(jì)劃的預(yù)算總額增加了m%,求出m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實(shí)數(shù),定義兩種新運(yùn)算“※”和“”: (其中為常數(shù),且,若對于平面直角坐標(biāo)系中的點(diǎn),有點(diǎn)的坐標(biāo),與之對應(yīng),則稱點(diǎn)的“衍生點(diǎn)”為點(diǎn).例如:的“2衍生點(diǎn)”為,即

1)點(diǎn)的“3衍生點(diǎn)”的坐標(biāo)為  ;

2)若點(diǎn)的“5衍生點(diǎn)” 的坐標(biāo)為,求點(diǎn)的坐標(biāo);

3)若點(diǎn)的“衍生點(diǎn)”為點(diǎn),且直線平行于軸,線段的長度為線段長度的3倍,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】模型建立:

(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點(diǎn)C,過AADEDD,過BBEEDE

求證:△BEC≌△CDA

模型應(yīng)用:

(2)已知直線l1y=x+4y軸交與A點(diǎn),將直線l1繞著A點(diǎn)順時(shí)針旋轉(zhuǎn)45°l2,如圖2,求l2的函數(shù)解析式.

(3)如圖3,矩形ABCO,O為坐標(biāo)原點(diǎn),B的坐標(biāo)為(8,6),A、C分別在坐標(biāo)軸上,P是線段BC上動(dòng)點(diǎn),設(shè)PC=m,已知點(diǎn)D在第一象限,且是直線y=2x-6上的一點(diǎn),若△APD是不以A為直角頂點(diǎn)的等腰Rt△,請直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).網(wǎng)格中有一個(gè)格點(diǎn)ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

1)在圖中作出ABC關(guān)于直線l對稱的A1B1C1 (要求AA1,BB1,CC1相對應(yīng));

2)求ABC的面積;

3)在直線l上找一點(diǎn)P,使得PAC的周長最。

查看答案和解析>>

同步練習(xí)冊答案