【題目】如圖,在△ABC中,∠A=90°,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,CE⊥BD,交BD的延長(zhǎng)線于點(diǎn)E,若BD=6,則CE的值為( )
A. 4B. 3.5C. 2D. 3
【答案】D
【解析】
延長(zhǎng)BA、CE相交于點(diǎn)F,利用“角邊角”證明△BCE和△BFE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CE=EF,根據(jù)等角的余角相等求出∠ABD=∠ACF,然后利用“角邊角”證明△ABD和△ACF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BD=CF,然后求解即可.
解:如圖,
延長(zhǎng)BA、CE相交于點(diǎn)F,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△BCE和△BFE中,
∴△BCE≌△BFE(ASA),
∴CE=EF,
∵∠BAC=90°,CE⊥BD,
∴∠ACF+∠F=90°,∠ABD+∠F=90°,
∴∠ABD=∠ACF,
在△ABD和△ACF中,
∴△ABD≌△ACF(ASA),
∴BD=CF,
∵CF=CE+EF=2CE,
∴BD=2CE=6,
∴CE=3.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】共享經(jīng)濟(jì)與我們的生活息息相關(guān),其中,共享單車的使用給我們的生活帶來了很多便利.但在使用過程中出現(xiàn)一些不文明現(xiàn)象.某市記者為了解“使用共享單車時(shí)的不文明行為”.隨機(jī)抽查了該市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖表(每個(gè)市民僅持有一種觀點(diǎn)).
調(diào)查結(jié)果分組統(tǒng)計(jì)表
組別 | 觀點(diǎn) | 頻數(shù)(人數(shù)) |
損壞零件 | 50 | |
破譯密碼 | 20 | |
亂停亂放 | ||
私鎖共享單車,歸為己用 | ||
其他 | 30 |
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)填空: ; ; ;
(2)求扇形圖中組所在扇形的圓心角度數(shù);
(3)若該市約有100萬人,請(qǐng)你估計(jì)其中持有組觀點(diǎn)的市民人數(shù).
(4)針對(duì)以上現(xiàn)象,作為初中生的你有什么合理化的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)A(﹣1,3),與x軸的一個(gè)交點(diǎn)B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①2a﹣b=0;②abc<0;③拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是(3,0);④方程ax2+bx+c﹣3=0有兩個(gè)相等的實(shí)數(shù)根;⑤當(dāng)﹣4<x<﹣1時(shí),則y2<y1.
其中正確的是( 。
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小亮、小剛、小穎一起研究一道數(shù)學(xué)題,如圖,已知EF⊥AB,CD⊥AB,小明說:“如果還知道∠CDG=∠BFE,則能得到 ∠AGD=∠ACB.”
小亮說:“把小明的已知和結(jié)論倒過來,即由 ∠AGD=∠ACB ,
可得到 ∠CDG=∠BFE .”
小剛說:“∠AGD 一定大于∠BFE .”
小穎說:“如果連接 GF,則GF一定平行于AB .”
他們四人中,有____個(gè)人的說法是正確的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點(diǎn)E作EF丄AE,交BC于點(diǎn)F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過點(diǎn)E作EF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE和△ECF相似;
(3)應(yīng)用:如圖③,若EF交AB于點(diǎn)F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級(jí)組織學(xué)生參加夏令營(yíng)活動(dòng),本次夏令營(yíng)分為甲、乙、丙三組進(jìn)行活動(dòng).下面兩幅統(tǒng)計(jì)圖反映了學(xué)生報(bào)名參加夏令營(yíng)的情況,請(qǐng)你根據(jù)圖中的信息回答下列問題:
(1)該年級(jí)報(bào)名參加丙組的人數(shù)為 ;
(2)該年級(jí)報(bào)名參加本次活動(dòng)的總?cè)藬?shù) ,并補(bǔ)全頻數(shù)分布直方圖;
(3)根據(jù)實(shí)際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗從化,某中學(xué)七年級(jí)一班同學(xué)都積極參加了植樹活動(dòng),今年四月份該班同學(xué)的植樹情況部分如圖所示,且植樹2株的人數(shù)占32%.
(1)求該班的總?cè)藬?shù)、植樹株數(shù)的眾數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若將該班同學(xué)的植樹人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖時(shí),求“植樹3株”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)求從該班參加植樹的學(xué)生中任意抽取一名,其植樹株數(shù)超過該班植樹株數(shù)的平均數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.
(1)求點(diǎn)B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com