【題目】某初中要調查學校學生(總數(shù) 1000 人)雙休日課外閱讀情況,隨機調查了一部分學生,調查得 到的數(shù)據(jù)分別制成頻數(shù)直方圖(如圖 1)和扇形統(tǒng)計圖(如圖 2).
(1)請補全上述統(tǒng)計圖(直接填在圖中);
(2) 試確定這個樣本的中位數(shù)和眾數(shù);
(3)請估計該學校 1000 名學生雙休日課外閱讀時間不少于 4 小時的人數(shù).
【答案】(1)畫圖見解析;(2)中位數(shù)是3小時,眾數(shù)是4小時;(3)400人.
【解析】
(1)根據(jù)閱讀5小時以上頻數(shù)為6,所占百分比為12%,求出數(shù)據(jù)的總數(shù),再用數(shù)據(jù)總數(shù)減去其余各組頻數(shù)得到閱讀3小時以上頻數(shù),然后補全頻數(shù)分布直方圖,分別求得閱讀0小時和4小時的人數(shù)所占百分比,補全扇形圖;
(2)利用各組頻數(shù)和總數(shù)之間的關系確定中位數(shù)和眾數(shù);
(3)用1000乘以每周課外閱讀時間不小于4小時的學生所占百分比即可.
解:(1)總人數(shù):612%= 50 (人),
閱讀3小時以上人數(shù):50-4-6-8-14-6= 12 (人),
閱讀3小時以上人數(shù)的百分比為1250= 24% ,
閱讀0小時以上人數(shù)的百分比為450= 8% .
圖如下:
(2)中位數(shù)是3小時,眾數(shù)是4小時;
(3) 1000(28% + 12%)
= 100040%
= 400(人)
答:該學校1000名學生雙休日課外閱讀時間不少于4小時的人數(shù)為400人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射線EF∥AC.
(1)判斷射線EF與BD的位置關系,并說明理由;
(2)求∠C,∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā)勻速前行,且途中休息一段時間后繼續(xù)以原速前行.家到公園的距離為2000m,如圖是小明和爸爸所走的路程S(m)與步行時間t(min)的函數(shù)圖象.
(1)直接寫出BC段圖象所對應的函數(shù)關系式(不用寫出t的取值范圍).
(2)小明出發(fā)多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早18分鐘到達公園,則小明在步行過程中停留的時間需減少 分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,連接BD,AB=2AD,點E在AB邊上,連接ED.
(1)若∠ADE=30°,DE=6,求△BDE的面積;
(2)延長CB至點F使得BF=2AD,連接FE并延長交AD于點M,過點A作AN⊥EM于點N,連接BN,求證:FN=AN+BN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一個木制正方體的表面涂上顏色,然后將正方形分割成27個大小相同的小正方體,從這些小正方體中任意取出一個,求取出的小正方體;
(1)只有一面涂有顏色的概率;
(2)至少有兩面涂有顏色的概率;
(3)各個面都沒有顏色的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖a是一個長為2 m、寬為2 n的長方形, 沿圖中虛線用剪刀均分成四塊小長方形, 然后按圖b的形狀拼成一個正方形。
(1)你認為圖b中的陰影部分的正方形的邊長等于__________________。
(2)請用兩種不同的方法求圖b中陰影部分的面積。
方法1:___________________________ 方法2:___________________________
(3)觀察圖b,你能寫出下列三個代數(shù)式之間的等量關系嗎?
代數(shù)式: (m+n)2 ,(m-n)2,mn
_______________________________________________________
(4)根據(jù)(3)題中的等量關系,解決如下問題:
若a+b=7,ab=5,求(a-b)2的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于實數(shù),定義兩種新運算“※”和“”: ※,(其中為常數(shù),且,若對于平面直角坐標系中的點,有點的坐標※,與之對應,則稱點的“衍生點”為點.例如:的“2衍生點”為,即.
(1)點的“3衍生點”的坐標為 ;
(2)若點的“5衍生點” 的坐標為,求點的坐標;
(3)若點的“衍生點”為點,且直線平行于軸,線段的長度為線段長度的3倍,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com