【題目】如圖,∠B=∠C=90°,E是BC的中點,DE平分∠ADC.
(1)求證:AE平分∠DAB;
(2)若AD=8,BC=6,求四邊形ABCD的面積.
【答案】(1)證明見解析;(2)24.
【解析】
(1)過點E作EF⊥DA于點F,首先根據(jù)角的平分線上的點到角的兩邊的距離相等可得CE=EF,根據(jù)等量代換可得BE=EF,再根據(jù)角平分線的判定可得AE平分∠BAD;
(2)根據(jù)角平分線的性質可得CD=DF,AB=AF,可求CD+AB,再利用梯形的面積公式可得答案.
(1)過點E作EF⊥DA于點F,
∵∠C=90°,DE平分∠ADC,
∴CE=EF,
∵E是BC的中點,
∴BE=CE,
∴BE=EF,
又∵∠B=90°,EF⊥AD,
∴AE平分∠DAB.
(2)∵∠C=90°,DE平分∠ADC,EF⊥DA,
∴CD=DF,
∵∠B=90°,AE是∠DAB的平分線,
∴AB=AF,
∴CD+AB=DF+AF=AD=8,
∴S梯形ABCD=8×6÷2=24.
科目:初中數(shù)學 來源: 題型:
【題目】解決下列兩個問題:
(1)如圖1,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,P為直線EF上一動點,PA+PB的最小值為______,并在圖中標出當PA+PB取最小值時點P的位置.
(2)如圖2,點M、N在∠BAC的內部,請在∠BAC的內部求作一點P,使得點P到∠BAC兩邊的距離相等,且使PM=PN.(尺規(guī)作圖,保留作圖痕跡,無需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O在等邊△ABC內,∠BOC=150°,將△BOC繞點C順時針旋轉后,得△ADC,連接OD.
(1)△COD是______三角形.
(2)若OB=5,OC=3,求OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圓桌面(桌面中間有一個直徑為0.4m的圓洞)正上方的燈泡(看作一個點)發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )
A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四邊形ABDE=S△ABP,其中正確的是( 。
A.①③B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(0,2)在y軸上,點B在x軸上,作∠BAC=90°,并使AB=AC.
(1)如圖1,若點B的坐標為(﹣3,0),求點C的坐標.
(2)如圖2,若點B的坐標為(﹣4,0),連接BC交y軸于點D,AC交x軸于點E,連接DE,求證:BE=AD+DE.
(3)在(1)的條件下,如圖3,F為(4,0),作∠FAG=90°,并使AF=AG,連接GC交y軸于點H,求點H的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分線于M,交AB、AC于F、E,下列結論:①MB⊥BD;②FD=FB;③MD=2CE.其中一定正確的是_____.(只填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿對角線折疊,設重疊部分為△EBD,那么,有下列說法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EB=ED;③折疊后得到的圖形是軸對稱圖形;④折疊后∠ABE和∠CBD一定相等;其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com