【題目】某市青少年宮準備在七月一日組織市區(qū)部分學校的中小學生到本市A,B,C,D,E五個紅色旅游景區(qū)“一日游”,每名學生只能在五個景區(qū)中任選一個.為估算到各景區(qū)旅游的人數(shù),青少年宮隨機抽取這些學校的部分學生,進行了“五個紅色景區(qū),你最想去哪里”的問卷調查,在統(tǒng)計了所有的調查問卷后將結果繪制成如圖所示的統(tǒng)計圖.
(1)求參加問卷調查的學生數(shù),并將條形統(tǒng)計圖補充完整;
(2)若參加“一日游”的學生為1000人,請估計到C景區(qū)旅游的人數(shù).
【答案】(1)200人;畫圖見解析;(2)350人.
【解析】
(1)用到E景區(qū)旅游的人數(shù)除以其所占的百分比即可求出參加問卷調查的學生數(shù),用參加問卷調查的學生數(shù)減去到A、C、D、E景區(qū)旅游的人數(shù),求出到B景區(qū)旅游的人數(shù),即可將條形統(tǒng)計圖補充完整;
(2)先求出到C景區(qū)旅游的人數(shù)的百分比,再乘以1000,即可求出答案.
解:(1)參加問卷調查的學生數(shù)為:50÷25%=200(人).
到B景區(qū)旅游的人數(shù)是:200﹣20﹣70﹣10﹣50=50(人),
據(jù)此補充條形統(tǒng)計圖如圖:
(2)∵70÷200=35%,∴1000×35%=350(人).
答:估計到C景區(qū)旅游的有350人.
科目:初中數(shù)學 來源: 題型:
【題目】某工廠有20名工人,每人每天加工甲種零件5個或乙種零件4個.在這20名工人當中,派x人加工甲種零件,其余的加工乙種零件,已知每加工一個甲種零件可獲利16元,每加工一個乙種零件可以獲利24元.
(1)寫出此工廠每天所獲利潤y(元)與x(人)之間的函數(shù)關系式(只寫出解析式)
(2)若要使工廠每天獲利不低于1800元,問至少要派多少人加工乙種零件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長CA到點F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關系為 ,位置關系為 ;
(2)(拓展研究)
將△ADE繞點A旋轉,(1)中的結論有無變化?僅就圖(2)的情形給出證明;
(3)(解決問題)
當AB=2,AD=,△ADE旋轉得到D,E,F三點共線時,直接寫出線段DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應值如下表:
-1 | 0 | 1 | 3 | |
-3 | 1 | 3 | 1 |
下列結論:①拋物線的開口向下;②其圖象的對稱軸為;③當時,函數(shù)值隨的增大而增大;④方程有一個根大于4.其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點,則∠AEB ∠ACB(填“>”“<”“=”);
問題探究
(2)如圖②,在正方形ABCD中,P為CD邊上的一個動點,當點P位于何處時,∠APB最大?并說明理由;
問題解決
(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠處正對廣告牌走近時,在P處看廣告效果最好(視角最大),請你在圖③中找到點P的位置,并計算此時小剛與大樓AD之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點為邊中點,動點從點出發(fā),沿著的路徑以每秒1個單位長度的速度運動到點,在此過程中線段的長度隨著運動時間的函數(shù)關系如圖2所示,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家具生產廠生產某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子張或椅子把,現(xiàn)計劃用塊這種板材生產一批桌椅(不考慮板材的損耗,恰好配套),設用塊板材做椅子,用塊板材做桌子,則下列方程組正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校計劃為疫情期間表現(xiàn)優(yōu)秀的學生購買獎品.已知購買個獎品和個獎品共需元;購買個獎品和個獎品共需元
(1)求兩種獎品的單價;
(2)學校準備購買兩種獎品共個,且獎品的數(shù)量不少于獎品數(shù)量的一半,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在邊上的處,折痕為,過點作交于,連接.
(1)求證:四邊形為菱形;
(2)當點在邊上移動時,折痕的端點也隨之移動;
①當點與點重合時(如圖2),求菱形的邊長;
②若限定分別在邊上移動,求出點在邊上移動的最大距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com