【題目】如圖1,在矩形紙片中,,,折疊紙片使點(diǎn)落在邊上的處,折痕為,過(guò)點(diǎn)作交于,連接.
(1)求證:四邊形為菱形;
(2)當(dāng)點(diǎn)在邊上移動(dòng)時(shí),折痕的端點(diǎn)也隨之移動(dòng);
①當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖2),求菱形的邊長(zhǎng);
②若限定分別在邊上移動(dòng),求出點(diǎn)在邊上移動(dòng)的最大距離.
【答案】(1)見(jiàn)解析;(2)①,②
【解析】
(1)根據(jù)軸對(duì)稱的性質(zhì)得到,,,再由平行線的性質(zhì)得到,從而得到,由“等角對(duì)等邊”得到EP=EF,進(jìn)而得出即可;
(2)①先由折疊得:EC=BC=10,利用勾股定理得:ED=8,設(shè)PE=x,則PB=x,AP=6x,Rt△APE中,由勾股定理得:(6x)2+22=x2,解出即可;
②當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),點(diǎn)E離點(diǎn)A最近,由①知,此時(shí)AE=2cm;當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)E離點(diǎn)A最遠(yuǎn),AE=AB=6cm,即可得出答案;
解:(1)證明:折疊紙片使點(diǎn)落在邊上的處,折痕為,
點(diǎn)與點(diǎn)關(guān)于對(duì)稱,
,,,
又,
,
,
,
,
四邊形為菱形;
(2)解:①四邊形是矩形,
,,,
點(diǎn)與點(diǎn)關(guān)于對(duì)稱,點(diǎn)C與點(diǎn)Q重合,
,
在中,,
;
在中,,,
,
解得:,
菱形的邊長(zhǎng)為;
②當(dāng)點(diǎn)與點(diǎn)重合時(shí),如圖2;
點(diǎn)離點(diǎn)最近,由①知,此時(shí);
當(dāng)點(diǎn)與點(diǎn)重合時(shí),如圖3所示:
點(diǎn)離點(diǎn)最遠(yuǎn),此時(shí)四邊形為正方形,,
點(diǎn)在邊上移動(dòng)的最大距離為6-2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市青少年宮準(zhǔn)備在七月一日組織市區(qū)部分學(xué)校的中小學(xué)生到本市A,B,C,D,E五個(gè)紅色旅游景區(qū)“一日游”,每名學(xué)生只能在五個(gè)景區(qū)中任選一個(gè).為估算到各景區(qū)旅游的人數(shù),青少年宮隨機(jī)抽取這些學(xué)校的部分學(xué)生,進(jìn)行了“五個(gè)紅色景區(qū),你最想去哪里”的問(wèn)卷調(diào)查,在統(tǒng)計(jì)了所有的調(diào)查問(wèn)卷后將結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖.
(1)求參加問(wèn)卷調(diào)查的學(xué)生數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若參加“一日游”的學(xué)生為1000人,請(qǐng)估計(jì)到C景區(qū)旅游的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上.設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),
①如圖2,若點(diǎn)P在直線AB上方,連接OP交AB于點(diǎn)D,求的最大值;
②如圖3,若點(diǎn)P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)E或F恰好落在y軸上,直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,AD=AE,∠BAC=∠DAE.
(1)求證:△ABD≌△ACE;
(2)若∠1=25°,∠2=30°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為2的正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,P是BD上一動(dòng)點(diǎn),過(guò)P作EF∥AC,分別交正方形的兩條邊于點(diǎn)E,F.設(shè)BP=x,△BEF的面積為y,則能反映y與x之間關(guān)系的圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O.
(1)作∠B的平分線與⊙O交于點(diǎn)D(用尺規(guī)作圖,不用寫作法,但要保留作圖痕跡);
(2)在(1)中,連接AD,若∠BAC=60°,∠C=66°,求∠DAC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O.
(1)作∠B的平分線與⊙O交于點(diǎn)D(用尺規(guī)作圖,不用寫作法,但要保留作圖痕跡);
(2)在(1)中,連接AD,若∠BAC=60°,∠C=66°,求∠DAC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示的是一種折疊門,已知門框的寬度AD=2米,兩扇門的大小相同(即AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)67°(如圖2).
(1)求點(diǎn)C到AD的距離.
(2)將左邊的門ABB1A1繞門軸AA1向外面旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(如圖3),問(wèn)α為多少時(shí),點(diǎn)B,C之間的距離最短?(參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,tan29.6°≈0.57,tan19.6°≈0.36,sin29.6°≈0.49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙中,為直徑,、分別切⊙于點(diǎn)、.
(1)如圖①,若,求的大。
(2)如圖②,過(guò)點(diǎn)作∥,交于點(diǎn),交⊙于點(diǎn),若,求的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com