【題目】如圖,在銳角△ABC中,BC=10,高AD=8,矩形EFPQ的一邊QP在BC邊上,E、F兩點(diǎn)分別在AB、AC上,AD交EF于點(diǎn)H.
(1)求證: = ;
(2)設(shè)EF的長(zhǎng)為x.
①當(dāng)x為何值時(shí),矩形EFPQ為正方形?
②當(dāng)x為何值時(shí),矩形EFPQ的面積最大?并求其最大值.
【答案】
(1)
解:證明:∵四邊形EFPQ是矩形,
∴EF∥BC,
∴△AEF∽△ABC,∠AHF=∠ADC,
又∵AD是高,
∴∠AHF=∠ADC=90°,即AH是△AEF的高.
∴ ;
(2)
解:①若矩形EFPQ為正方形,則HD=EQ=EF=x.
∴AH=AD﹣HD=8﹣x.
又∵ ,BC=10,
∴ .
解得 .
∴當(dāng) 時(shí),矩形EFPQ為正方形;
②∵HD=EQ,AD=8,
∴AH=AD﹣HD=8﹣EQ.
又∵ ,EF=x,BC=10,
∴ .
∴ .
∴S矩形EFPQ= .
∵S矩形EFPQ= (0<x<10),
∴當(dāng)x=5時(shí),S矩形EFPQ有最大值為20.
∴當(dāng)x=5時(shí),矩形EFPQ的面積最大,最大面積為20
【解析】(1)根據(jù)矩形的性質(zhì)得出EQ=HD=FP,EF∥BC,推出△AEF∽△ABC,根據(jù)相似三角形的性質(zhì)推出即可;(2)①根據(jù)正方形的性質(zhì)可知HD=EQ=EF,令HD=EQ=EF=x;利用相似三角形的性質(zhì)可得 ,可得x的值;②根據(jù)矩形的面積公式,可以把面積表示成關(guān)于EF的長(zhǎng)的函數(shù),根據(jù)函數(shù)的性質(zhì)即可求解.
【考點(diǎn)精析】掌握關(guān)于仰角俯角問(wèn)題是解答本題的根本,需要知道仰角:視線(xiàn)在水平線(xiàn)上方的角;俯角:視線(xiàn)在水平線(xiàn)下方的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C、D分別在扇形AOB的半徑OA、OB的延長(zhǎng)線(xiàn)上,且OA=3,AC=3 ﹣3,CD∥AB,并與弧AB相交于點(diǎn)M、N.
(1)求線(xiàn)段OD的長(zhǎng);
(2)若sin∠C= ,求弦MN的長(zhǎng);
(3)在(2)的條件下,求優(yōu)弧MEN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:長(zhǎng)寬比為:1(n為正整數(shù))的矩形稱(chēng)為矩形.
下面,我們通過(guò)折疊的方式折出一個(gè)矩形,如圖①所示.
操作1:將正方形ABCD沿過(guò)點(diǎn)B的直線(xiàn)折疊,使折疊后的點(diǎn)C落在對(duì)角線(xiàn)BD上的點(diǎn)G處,折痕為BH.
操作2:將AD沿過(guò)點(diǎn)G的直線(xiàn)折疊,使點(diǎn)A,點(diǎn)D分別落在邊AB,CD上,折痕為EF.
則四邊形BCEF為矩形.
證明:設(shè)正方形ABCD的邊長(zhǎng)為1,則BD==.
由折疊性質(zhì)可知BG=BC=1,∠AFE=∠BFE=90°,則四邊形BCEF為矩形.
∴∠A=∠BFE.
∴EF∥AD.
∴=,即=.
∴BF=.
∴BC:BF=1:=:1.
∴四邊形BCEF為矩形.
閱讀以上內(nèi)容,回答下列問(wèn)題:
(1)在圖①中,所有與CH相等的線(xiàn)段是 ,tan∠HBC的值是 ;
(2)已知四邊形BCEF為矩形,模仿上述操作,得到四邊形BCMN,如圖②,求證:四邊形BCMN是矩形;
(3)將圖②中的矩形BCMN沿用(2)中的方式操作3次后,得到一個(gè)“矩形”,則n的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列解答中,填寫(xiě)適當(dāng)?shù)睦碛苫驍?shù)學(xué)式:
(1)∵ ∠ABD=∠CDB, ( 已知 )
∴ ∥ . ( )
(2)∵ ∠ADC+∠DCB=180°, ( 已知 )
∴ ∥ . ( )
(3)∵ AD∥BE, ( 已知 )
∴ ∠DCE=∠ . ( )
(4)∵ ∥ , ( 已知 )
∴ ∠BAE=∠CFE. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)經(jīng)銷(xiāo)商計(jì)劃同時(shí)購(gòu)進(jìn)一批甲、乙兩種型號(hào)手機(jī),若購(gòu)進(jìn)2部甲型號(hào)手機(jī)和5部乙型號(hào)手機(jī),共需資金6000元;若購(gòu)進(jìn)3部甲型號(hào)手機(jī)和2部乙型號(hào)手機(jī),共需資金4600元.
(1)求甲、乙型號(hào)手機(jī)每部進(jìn)價(jià)多少元?
(2)為了提高利潤(rùn),該店計(jì)劃購(gòu)進(jìn)甲、乙型號(hào)手機(jī)銷(xiāo)售,預(yù)計(jì)用不多于1.8萬(wàn)元且不少于1.76萬(wàn)元的資金購(gòu)進(jìn)這兩種手機(jī)共20部,請(qǐng)問(wèn)有幾種進(jìn)貨方案?
(3)若甲型號(hào)手機(jī)的售價(jià)為1500元,乙型號(hào)手機(jī)的售價(jià)為1400元,為了促銷(xiāo),公司決定每售出一部乙型號(hào)手機(jī),返還顧客現(xiàn)金a元;而甲型號(hào)手機(jī)售價(jià)不變,要使(2)中所有方案獲利相同,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校招聘一名數(shù)學(xué)老師,對(duì)應(yīng)聘者分別進(jìn)行了教學(xué)能力、科研能力和組織能力三項(xiàng)測(cè)試,其中甲、乙兩名應(yīng)聘者的成績(jī)?nèi)缬冶恚海▎挝唬悍郑?/span>
教學(xué)能力 | 科研能力 | 組織能力 | |
甲 | 81 | 85 | 86 |
乙 | 92 | 80 | 74 |
(1)若根據(jù)三項(xiàng)測(cè)試的平均成績(jī)?cè)诩、乙兩人中錄用一人,那么誰(shuí)將被錄用?
(2)根據(jù)實(shí)際需要,學(xué)校將教學(xué)、科研和組織能力三項(xiàng)測(cè)試得分按 5:3:2 的比確定每人的最后成績(jī),若按此成績(jī)?cè)诩、乙兩人中錄用一人,誰(shuí)將被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若AGAB=12,求AC的長(zhǎng);
(3)在滿(mǎn)足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是學(xué)習(xí)一元一次方程應(yīng)用時(shí),老師出示的問(wèn)題和兩名同學(xué)所列的方程,根據(jù)圖中信息,解答下列問(wèn)題.
(1)小杰同學(xué)所列方程中的x表示什么,小婷同學(xué)所列方程中的y表示什么;
(2)兩個(gè)方程中任選一個(gè),并寫(xiě)出它的等量關(guān)系;
(3)解(2)中你所選擇的方程,并回答老師提出的問(wèn)題。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD,點(diǎn)E是邊AD上一點(diǎn),過(guò)點(diǎn)E作EF⊥BC,垂足為點(diǎn)F,將△BEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在邊BC上的點(diǎn)N處,點(diǎn)F落在邊DC上的點(diǎn)M處,如果點(diǎn)M恰好是邊DC的中點(diǎn),那么 的值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com