【題目】已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,
(1)求一次函數(shù)的解析式.
(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.
【答案】(1)y=2x+2;(2)y=.
【解析】
(1)由cos∠ABO=,可得到tan∠ABO=2,從而可得到k=2;
(2)先求得A、B的坐標(biāo),然后依據(jù)中點坐標(biāo)公式可求得點P的坐標(biāo),將點P的坐標(biāo)代入反比例函數(shù)的解析式可求得m的值.
(1)∵cos∠ABO=,
∴tan∠ABO=2.又∵OA=2
∴OB=1.B(-1,0)代入y=kx+2得k=2
∴一次函數(shù)的解析式為y=2x+2.
(2)當(dāng)x=0時,y=2,
∴A(0,2).
當(dāng)y=0時,2x+2=0,解得:x=﹣1.
∴B(﹣1,0).
∵AC是△PCB的中線,
∴P(1,4).
∴m=xy=1×4=4,
∴反例函數(shù)的解析式為y=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=( 。
A. 10B. 9C. 8D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
由于霧霾天氣頻發(fā),市場上防護(hù)口罩出現(xiàn)熱銷.某藥店準(zhǔn)備購進(jìn)一批口罩,已知1個A型口罩和3個B型口罩共需26元;3個A型口罩和2個B型口罩共需29元.
⑴ 求一個A型口罩和一個B型口罩的售價各是多少元?
⑵ 藥店準(zhǔn)備購進(jìn)這兩種型號的口罩共50個,其中A型口罩?jǐn)?shù)量不少于35個,且不多于B型口罩的3倍,有哪幾種購買方案,哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上.請解答下列問題:
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數(shù)量關(guān)系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE與AB相交于點F.試探究線段BE與FD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.
(1)求證:△AMC∽△EMB;
(2)求EM的長;
(3)求sin∠EOB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(1)的位置時,顯然有:DE=AD+BE;請證明.
(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(2)的位置時,求證:DE=AD-BE;
(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(3)的位置時,試問(2)中DE、AD、BE的關(guān)系還成立嗎?若成立,請證明;若不成立,它們又具有怎樣的等量關(guān)系?請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,求AA′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的四個圖案中,既可用旋轉(zhuǎn)來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com