【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個(gè)直角的頂點(diǎn)重合于對角線BD上一點(diǎn)P、EF、GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是正方形ABCD的中心;
②當(dāng)x= 時(shí),EF+GH>AC;
③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是3;
④當(dāng)0<x<2時(shí),六邊形AEFCHG周長的值不變.
其中正確的選項(xiàng)是( )

A.①③
B.①②④
C.①③④
D.①②③④

【答案】C
【解析】解:(1)正方形紙片ABCD,翻折∠B、∠D,使兩個(gè)直角的頂點(diǎn)重合于對角線BD上一點(diǎn)P,
∴△BEF和△DGH是等腰直角三角形,
∴當(dāng)AE=1時(shí),重合點(diǎn)P是BD的中點(diǎn),
∴點(diǎn)P是正方形ABCD的中心;
故①結(jié)論正確,
·(2)正方形紙片ABCD,翻折∠B、∠D,使兩個(gè)直角的頂點(diǎn)重合于對角線BD上一點(diǎn)P,
∴△BEF∽△BAC,
∵x= ,
∴BE=2﹣ =
,即
∴EF= AC,
同理,GH= AC,
∴EF+GH=AC,
故②結(jié)論錯(cuò)誤,
·(3)六邊形AEFCHG面積=正方形ABCD的面積﹣△EBF的面積﹣△GDH的面積.
∵AE=x,
∴六邊形AEFCHG面積=22 BEBF﹣ GDHD=4﹣ ×(2﹣x)(2﹣x)﹣ xx=﹣x2+2x+2=﹣(x﹣1)2+3,
∴六邊形AEFCHG面積的最大值是3,
故③結(jié)論正確,
·(4)當(dāng)0<x<2時(shí),
∵EF+GH=AC,
六邊形AEFCHG周長=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+2 =4+2 故六邊形AEFCHG周長的值不變,
故④結(jié)論正確.
故選C
【考點(diǎn)精析】利用翻折變換(折疊問題)對題目進(jìn)行判斷即可得到答案,需要熟知折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以線段AC為對角線的四邊形ABCD(它的四個(gè)頂點(diǎn)A、B、C、D按順時(shí)針方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°;則∠BCD的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.

(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)|﹣2|﹣(1+ 0+ ;
(2)(a﹣ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)A,C分別在y軸,x軸上,∠ACB=90°,OA= ,拋物線y=ax2﹣ax﹣a經(jīng)過點(diǎn)B(2, ),與y軸交于點(diǎn)D.

(1)求拋物線的表達(dá)式;
(2)點(diǎn)B關(guān)于直線AC的對稱點(diǎn)是否在拋物線上?請說明理由;
(3)延長BA交拋物線于點(diǎn)E,連接ED,試說明ED∥AC的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長BE交CD的延長線于點(diǎn)F.
(1)證明:FD=AB;
(2)當(dāng)ABCD的面積為8時(shí),求△FED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長為2a、寬為2b的長方形其中a,b均為正數(shù),且a>b,沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖2方式拼成一個(gè)大正方形

1你認(rèn)為圖2中大正方形的邊長為 a+b ;小正方形陰影部分的邊長為 .(用含a、b的代數(shù)式表示

2仔細(xì)觀察圖2,請你寫出下列三個(gè)代數(shù)式:a+b2a-b2,ab所表示的圖形面積之間的相等關(guān)系,并選取適合a、b的數(shù)值加以驗(yàn)證

3已知a+b=7,ab=6求代數(shù)式a-b的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是( 。

A.①③
B.①③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn),連結(jié)OA,OB,過A作AE⊥x軸于點(diǎn)E,交OB于點(diǎn)F,設(shè)點(diǎn)A的橫坐標(biāo)為m.

(1)b=(用含m的代數(shù)式表示);
(2)若SOAF+S四邊形EFBC=4,則m的值是

查看答案和解析>>

同步練習(xí)冊答案