【題目】某校舉行了“文明在我身邊”攝影比賽.已知每幅參賽作品成績記為x分(60≤x≤100).校方從600幅參賽作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.
“文明在我身邊”攝影比賽成績統(tǒng)計表

分數(shù)段

頻數(shù)

頻率

60≤x<70

18

0.36

70≤x<80

17

c

80≤x<90

a

0.24

90≤x≤100

b

0.06

合計

1

根據(jù)以上信息解答下列問題:

(1)統(tǒng)計表中c的值為;樣本成績的中位數(shù)落在分數(shù)段中;
(2)補全頻數(shù)分布直方圖;
(3)若80分以上(含80分)的作品將被組織展評,試估計全校被展評作品數(shù)量是多少?

【答案】
(1)0.34;70≤x<80
(2)

解:補全圖形如下:


(3)

解:600×(0.24+0.06)=180(幅),

答:估計全校被展評作品數(shù)量是180幅.


【解析】解:(1)本次調(diào)查的作品總數(shù)為18÷0.36=50(幅),
則c=17÷50=0.34,a=50×0.24=12,b=50×0.06=3,
其中位數(shù)為第25、26個數(shù)的平均數(shù),
∴中位數(shù)落在70≤x<80中,
所以答案是:0.34,70≤x<80;
【考點精析】本題主要考查了頻數(shù)分布直方圖和中位數(shù)、眾數(shù)的相關(guān)知識點,需要掌握特點:①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計圖與頻數(shù)分布直方圖);中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù)才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在ABCD中,過點D作對DE⊥AB于點E,點F在邊CD上,CF=AE,連結(jié)AF,BF.

(1)求證:四邊形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的角平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(0,4),△OAB沿x軸向右平移后得到△O′A′B′,點A的對應(yīng)點A′是直線y= x上一點,則點B與其對應(yīng)點B′間的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2).
(1)求這兩個函數(shù)的表達式;
(2)觀察圖象,直接寫出y1>y2時自變量x的取值范圍.
(3)連接OA、OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.
(1)求每張門票的原定票價;
(2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,濕地景區(qū)岸邊有三個觀景臺A、B、C,已知AB=1400米,AC=1000米,B點位于A點的南偏西60.7°方向,C點位于A點的南偏東66.1°方向.

(1)求△ABC的面積;
(2)景區(qū)規(guī)劃在線段BC的中點D處修建一個湖心亭,并修建觀景棧道AD,試求A、D間的距離.(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41, ≈1.414).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義: 數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱這個三角形為“智慧三角形”.
理解:
(1)如圖1,已知A、B是⊙O上兩點,請在圓上找出滿足條件的點C,使△ABC為“智慧三角形”(畫出點C的位置,保留作圖痕跡);
(2)如圖2,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且CF= CD,試判斷△AEF是否為“智慧三角形”,并說明理由; 運用:

(3)如圖3,在平面直角坐標系xOy中,⊙O的半徑為1,點Q是直線y=3上的一點,若在⊙O上存在一點P,使得△OPQ為“智慧三角形”,當其面積取得最小值時,直接寫出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AC= ,∠A=30°,BC=1,則AB=

查看答案和解析>>

同步練習冊答案