【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②當(dāng)x>2時,y>0;③3a+c>0;④3a+b>0.其中正確的結(jié)論有( )
A. ①② B. ①④ C. ①③④ D. ②③④
【答案】C
【解析】
由二次函數(shù)圖象開口方向、對稱軸的位置、圖象與y軸交點的位置得到a、b、c的符號,即可判①;由圖象可知,當(dāng)x=0時,y<0,根據(jù)對稱軸為x=1可得當(dāng)x=2時,y<0,觀察圖象即可判定②;由圖象可知,x=-1時,y>0,即可得a-b+c=0,根據(jù)對稱軸- =1,可得b=-2a,代入即可判定③;由- =1可得2a+b=0,所以3a+b=2a+b+a=a>0,即可判定④.
由二次函數(shù)圖象開口向上,得到a>0;與y軸交于負(fù)半軸,得到c<0,對稱軸在y軸右側(cè),a、b異號,則b<0,所以abc>0,①正確;
②由圖象可知,當(dāng)x=0時,y<0,根據(jù)對稱軸為x=1可得當(dāng)x=2時,y<0,當(dāng)x>2時,y值得符號不確定,∴②不正確;
③∵當(dāng)x=-1時,y>0,
∴a-b+c=0,
∵- =1,
∴b=-2a,
∴a+2a+c>0,
∴3a+c>0,
∴③正確;
④∵- =1,
∴2a+b=0,
∴3a+b=2a+b+a=a>0,
∴④正確.
綜上,正確的結(jié)論為①③④.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若十位上的數(shù)字比個位上的數(shù)字、百位上的數(shù)字都大的三位數(shù)叫做中高數(shù),如就是一個“中高數(shù)”.若十位上數(shù)字為,則從、、、、、中任選兩個不同的數(shù),與組成“中高數(shù)”的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,與軸、軸分別交于點、點,直線的解析式為,與軸、軸分別交于點、點,直線與交于點.
(1)求點的坐標(biāo);
(2)若直線上存在點,使得,請求出點的坐標(biāo);
(3)在軸右側(cè)、點左側(cè)有一條平行于軸的動直線,分別與,交于點,,軸上是否存在點,使為等腰直角三角形?若存在,請求出滿足條件的所有點的坐標(biāo);若不存在;請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,拋物線 y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點 A 在點 B 左側(cè)).
(1)當(dāng)拋物線過原點時,求實數(shù) a 的值;
(2)①求拋物線的對稱軸;
②求拋物線的頂點的縱坐標(biāo)(用含 a 的代數(shù)式表示);
(3)當(dāng) AB≤4 時,求實數(shù) a 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長是關(guān)于x的方程x2-mx+-=0的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么□ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(1,0)及點B.
(1)求m的值與一次函數(shù)的解析式;
(2)拋物線上是否存在一點P,使S△ABP=S△ABC?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了美化綠化校園,計劃購買甲,乙兩種花木共100棵綠化操場,其中甲種花木每棵60元,乙種花木每棵80元.
(1)若購買甲,乙兩種花木剛好用去7200元,則購買了甲,乙兩種花木各多少棵?
(2)如果購買乙種花木的數(shù)量不少于甲種花木的數(shù)量,請設(shè)計一種購買方案使所需費用最低,并求出該購買方案所需總費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形的長為15,寬為10,高為20,點離點的距離為5,螞蟻如果要沿著長方形的表面從點爬到點,需要爬行的最短距離是( )
A.35B.C.25D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com