【題目】某藥品研究所開發(fā)一種抗菌新藥,經多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關系如圖所示(當4≤x≤10時,y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間多少小時?
【答案】
(1)解:當0≤x≤4時,設直線解析式為:y=kx,
將(4,8)代入得:8=4k,
解得:k=2,
故直線解析式為:y=2x,
當4≤x≤10時,設反比例函數(shù)解析式為:y= ,
將(4,8)代入得:8= ,
解得:a=32,
故反比例函數(shù)解析式為:y= ;
因此血液中藥物濃度上升階段的函數(shù)關系式為y=2x(0≤x≤4),
下降階段的函數(shù)關系式為y= (4≤x≤10)
(2)解:當y=4,則4=2x,解得:x=2,
當y=4,則4= ,解得:x=8,
∵8﹣2=6(小時),
∴血液中藥物濃度不低于4微克/毫升的持續(xù)時間6小時
【解析】(1)分別利用正比例函數(shù)以及反比例函數(shù)解析式求法得出即可;(2)利用y=4分別得出x的值,進而得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】某校隨機調查了部分學生,就“你最喜歡的圖書類別”(只選一項)對學生課外閱讀的情況作了調查統(tǒng)計,將調查結果統(tǒng)計后繪制成如下統(tǒng)計表和條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖表提供的信息解答下列問題:
種類 | 頻數(shù) | 頻率 |
卡通畫 | a | .45 |
時文雜志 | b | 0.16 |
武俠小說 | 50 | c |
文學名著 | d | e |
(1)這次隨機調查了______名學生,統(tǒng)計表中a=______,d=______;
(2)假如以此統(tǒng)計表繪出扇形統(tǒng)計圖,則武俠小說對應的圓心角是______;
(3)試估計該校1500名學生中有多少名同學最喜歡文學名著類書籍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知下列命題: ①若 >1,則a>b;
②若a+b=0,則|a|=|b|;
③等邊三角形的三個內角都相等;
④底角相等的兩個等腰三角形全等.
其中原命題與逆命題均為真命題的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD與AB交于點E,過點B的切線BP與CD的延長線交于點P,連接OC,CB.
(1)求證:AEEB=CEED;
(2)若⊙O的半徑為3,OE=2BE, = ,求tan∠OBC的值及DP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】陳老師和學生做一個猜數(shù)游戲,他讓學生按照如下步驟進行計算:
①任想一個兩位數(shù)a,把a乘以2,再加上9,把所得的和再乘以2;
②把a乘以2,再加上30,把所得的和除以2;
③把①所得的結果減去②所得的結果,這個差即為最后的結果.
陳老師說:只要你告訴我最后的結果,我就能猜出你最初想的兩位數(shù)a.
學生周曉曉計算的結果是96,陳老師立即猜出周曉曉最初想的兩位數(shù)是31.
請完成
(1)由①可列代數(shù)式 ,由②可列代數(shù)式 ,由③可知最后結果為 ;(用含a的式子表示)
(2)學生小明計算的結果是120,你能猜出他最初想的兩位數(shù)是多少嗎?
(3)請用自己的語言解釋陳老師猜數(shù)的方法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中(如圖每格一個單位),描出下列各點A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(xiàn)(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次將各點連接起來,觀察所描出的圖形,它像什么?根據(jù)圖形回答下列問題:
(1)圖形中哪些點在坐標軸上,它們的坐標有什么特點?
(2)線段FD和x軸有什么位置關系?點F和點D的坐標有什么特點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標分別為:A(-3,0),B(-1,-2),C(-2,2).
(1)請在圖中畫出△ABC繞B點順時針旋轉90°后的圖形△A′BC′.
(2)請直接寫出以A′、B、C′為頂點平行四邊形的第4個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知O是直線AB上一點,將一直角三角尺如圖QZ-13(a)放置,一直角邊ON在直線AB上,另一直角邊OM與AB所形成的∠AOM=90°,射線OC在∠AOM內部.
(探究)如圖(b),將三角尺繞著點O順時針旋轉,當∠AON=∠CON時,試判斷OM是否平分∠BOC,并說明理由.
(拓展)若∠AOC=80°時,三角尺OMN繞O點順時針旋轉一周,每秒旋轉5°,則多少秒后,∠MOC=∠MOB?
(延伸)在上述條件下,如圖(c),旋轉三角尺使ON在∠BOC內部,另一邊OM在直線AB的另一側,下面兩個結論:①∠NOC-∠BOM的值不變;②∠NOC+∠BOM的值不變.選擇其中一個正確的結論說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示.設點A,B,C所對應數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com